\(\left\{{}\begin{matrix}3x+my=m\\\left(m-1\right)x+2y=m-1\end{matrix}\right.\)

a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2020

$a)$: tự làm.

\(b)y=\dfrac{m-1-(m-1)x}{2};x=\dfrac{m-my}{3}\)

\(\dfrac{m-my}{3}+y^2=1\\ \Leftrightarrow m-my+3y^2-3=0\\ \Leftrightarrow 3y^2-my+m-3=0\)

Để phương trình có nghiệm duy nhất thì \(\Delta=0\)

Hay: \(m^2-4.3\left(m-3\right)=0\Leftrightarrow m^2-12m+36=0\Rightarrow m=6\)

4 tháng 2 2020

Hệ hai phương trình bậc nhất hai ẩn

b:

Sửa đê; x^2+y^2=1

=>3x=m-my và x(m-1)+2y=m-1

=>x=-1/3my+1/3m và (m-1)(-1/3my+1/3m)+2y=m-1

=>x=-1/3my+1/3m và \(y\cdot\dfrac{-1}{3}m^2+\dfrac{1}{3}m^2+\dfrac{1}{3}my-\dfrac{1}{3}m+2y=m-1\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}my+\dfrac{1}{3}m\\y\left(-\dfrac{1}{3}m^2+\dfrac{1}{3}m+2\right)=m-1-\dfrac{1}{3}m^2+\dfrac{1}{3}m=-\dfrac{1}{3}m^2+\dfrac{4}{3}m-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\left(-m^2+m+6\right)=-m^2+4m-3\\x=-\dfrac{1}{3}my+\dfrac{1}{3}m\end{matrix}\right.\)

=>y*(m-3)(m-2)=(m-3)(m-1) và x=-1/3my+1/3m

Nếu m=3 thì hệ có vô số nghiệm

nếu m=2 thì hệ vô nghiệm

Nếu m<>3; m<>2 thì hệ có nghiệm duy nhất là:

\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m-2}\\x=-\dfrac{1}{3}\cdot\dfrac{m^2-m}{m-2}+\dfrac{m}{3}=\dfrac{-m^2+m}{3m-6}+\dfrac{m}{3}=\dfrac{-m^2+m+m^2-2m}{3\left(m-2\right)}=\dfrac{-m}{3\left(m-2\right)}\end{matrix}\right.\)

x^2+y^2=1

=>(m-1/m-2)^2++(-m/3m-6)^2=1

=>\(\dfrac{\left(m-1\right)^2}{\left(m-2\right)^2}+\dfrac{m^2}{9\left(m-2\right)^2}=1\)

=>9(m-1)^2+m^2=9(m-2)^2

=>9m^2-18m+9+m^2=9m^2-36m+36

=>m^2-18m+9=-36m+36

=>m^2+18m-27=0

=>\(m=-9\pm6\sqrt{3}\)

NV
2 tháng 3 2021

a. Bạn tự giải

b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\) 

\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)

\(\Leftrightarrow m^2-4m-3=0\)

\(\Leftrightarrow...\)

2 tháng 3 2021

anh ơi :^^

23 tháng 6 2020

a, Hệ pt đã cho vô nghiệm khi :

\(\frac{m+1}{1}=\frac{m}{-1}\ne\frac{m+2}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=-\frac{1}{2}\\m\ne0\\m\ne2\end{matrix}\right.\)

\(\Leftrightarrow m=-\frac{1}{2}\)

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

NV
5 tháng 3 2020

1. \(\Leftrightarrow\left\{{}\begin{matrix}mx+m^2y=3m\\mx+4y=6\end{matrix}\right.\)

\(\Rightarrow\left(m^2-4\right)y=3\left(m-2\right)\)

\(\Leftrightarrow\left(m-2\right)\left(m+2\right)y=3\left(m-2\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow\left(m-2\right)\left(m+2\right)\ne0\Rightarrow m\ne\pm2\)

Để pt vô nghiệm \(\Rightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)=0\\3\left(m-2\right)\ne0\end{matrix}\right.\) \(\Rightarrow m=-2\)

2. Không thấy m nào ở hệ?

3. Bạn tự giải câu a

b/ \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=\frac{\left(m-1\right)\left(1-x\right)}{2}\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)

Để hệ có nghiệm duy nhất \(\Rightarrow m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)

Khi đó: \(\left\{{}\begin{matrix}x=\frac{m^2-3m}{m^2-m-6}=\frac{m}{m+2}\\y=\frac{\left(m-1\right)\left(1-x\right)}{2}=\frac{m-1}{m+2}\end{matrix}\right.\)

\(x+y^2=1\Leftrightarrow\frac{m}{m+2}+\frac{\left(m-1\right)^2}{\left(m+2\right)^2}=1\)

\(\Leftrightarrow m\left(m+2\right)+\left(m-1\right)^2=\left(m+2\right)^2\)

\(\Leftrightarrow m^2-4m-3=0\Rightarrow\) bấm máy, số xấu

NV
5 tháng 3 2020

4.

\(\Leftrightarrow\left\{{}\begin{matrix}m^2x+my=2m^2\\x+my=m+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)x=2m^2-m-1=\left(2m+1\right)\left(m-1\right)\\y=2m-mx\end{matrix}\right.\)

- Với \(m=1\) hệ có vô số nghiệm

- Với \(m=-1\) hệ vô nghiệm

- Với \(m\ne\pm1\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{\left(2m+1\right)\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\frac{2m+1}{m+1}\\y=2m-mx=\frac{m}{m+1}\end{matrix}\right.\)

NV
30 tháng 5 2019

a/ Bạn tự giải

b/ Để hệ có nghiệm duy nhất thì:

\(\left(m-1\right)^2-1\ne0\Leftrightarrow\left[{}\begin{matrix}m\ne0\\m\ne2\end{matrix}\right.\)

Khi đó hệ tương đương: \(\left\{{}\begin{matrix}\left(m-1\right)x+y=3m-4\\\left(m-1\right)x+\left(m-1\right)^2y=m\left(m-1\right)\end{matrix}\right.\)

Trừ pt dưới cho trên: \(m\left(m-2\right)y=\left(m-2\right)^2\Rightarrow y=\frac{m-2}{m}\)

\(\Rightarrow x=m-\left(m-1\right)y=\frac{3m-2}{m}\)

\(x+y=3\Leftrightarrow\frac{3m-2}{m}+\frac{m-2}{m}=3\Leftrightarrow4m-4=3m\Rightarrow m=4\)

30 tháng 5 2019

bn có thể làm chi tiết dc ko

Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

24 tháng 1 2018

Bài 1:

Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)

Bài 2 :

Để hpt đã cho có vô số nghiệm thì m = 1