Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3x-2}-\frac{1}{3x+2}-\frac{3x-6}{4-9x^2}\)
\(=\frac{3x+2}{9x^2-4}-\frac{3x-2}{9x^2-4}+\frac{3x-6}{9x^2-4}\)
\(=\frac{3x+2-3x+2+3x-6}{9x^2-4}\)
\(=\frac{3x-2}{9x^2-4}\)
\(=\frac{1}{3x+2}\)
\(\frac{18}{\left(x-3\right)\left(x^2-9\right)}-\frac{3}{x^2-6x+9}-\frac{x^2}{x^2-9}\)
\(=\frac{18}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\) \(-\frac{3\left(x+3\right)}{\left(x-3\right)\left(x-3\right)\left(x+3\right)}\)\(-\frac{x^2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)\left(x-3\right)}\)
\(=\frac{18-3x-9-x^3+3x^2}{\left(x-3\right)^2\left(x+3\right)}\)
\(=\frac{-x^3+3x^2-3x+9}{\left(x-3^2\right)\left(x+3\right)}\)
\(=\frac{\left(-x^2-3\right)\left(x-3\right)}{\left(x-3^2\right)\left(x+3\right)}\)
\(=\frac{-x^2-3}{\left(x-3\right)\left(x+3\right)}\)
học tốt
\(\dfrac{3x}{x+3}=\dfrac{3x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3x^2-9x}{x^2-9}\)
\(\dfrac{x-1}{x-3}=\dfrac{\left(x-1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+2x-3}{x^2-9}\)
\(x^2+9=\dfrac{\left(x^2+9\right)\left(x^2-9\right)}{x^2-9}=\dfrac{x^4-81}{x^2-9}\)
bài1 A=\(\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(\left(-\frac{x-3\cdot\left(x+3\right)^2}{\left(x+3\right)^2\cdot\left(x-3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
=\(-\frac{x}{x+3}\cdot\frac{x+3}{3x^2}=\frac{-1}{3x}\)
b) thế \(x=-\frac{1}{2}\)vào biểu thức A
\(-\frac{1}{3\cdot\left(-\frac{1}{2}\right)}=\frac{2}{3}\)
c) A=\(-\frac{1}{3x}< 0\)
VÌ (-1) <0 nên 3x>0
x >0
Câu 4: Không có nghĩa khi x-3=0
=>x=3
Câu 5:
\(A=\dfrac{x-3}{\left(x-3\right)\left(x+3\right)}=\dfrac{1}{x+3}\)
a. \(x^2y^3.35xy=5.7x^3y^4\)
\(\Leftrightarrow35x^3y^4=35x^3y^4\Rightarrowđpcm\)
\(b.x^2\left(x+2\right).\left(x+2\right)=x\left(x+2\right)^2.x\)
\(\Leftrightarrow x^2\left(x+2\right)^2=x^2\left(x+2\right)^2\Rightarrowđpcm\)
\(c.\left(3-x\right)\left(9-x^2\right)=\left(3+x\right)\left(x^2-6x+9\right)\)
\(\Leftrightarrow\left(3-x\right)\left(3-x\right)\left(3+x\right)=\left(3+x\right)\left(3-x\right)^2\)
\(\Leftrightarrow\left(3-x\right)^2\left(3+x\right)=\left(3-x\right)^2\left(3+x\right)\)
\(\Rightarrowđpcm\)
\(d.5\left(x^3-4x\right)=\left(10-5x\right)\left(-x^2-2x\right)\)
\(\Leftrightarrow5x^3-20x=5x^3-20x\Rightarrowđpcm\)
\(\text{a, ĐKXĐ: }\hept{\begin{cases}x+3\ne0\\x-3\ne0\\3x^2\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne\mp3\\x\ne0\end{cases}}\)
\(A=\left(\frac{3-x}{x+3}\cdot\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left[\frac{\left(3-x\right)\left(x+3\right)^2}{\left(x+3\right)\left(x+3\right)\left(x-3\right)}+\frac{x}{x+3}\right]\cdot\frac{x+3}{3x^2}\)
\(=\frac{x-x-3}{x+3}\cdot\frac{x+3}{3x^2}\)
\(=-\frac{1}{x^2}\)
b, với x=\(-\frac{1}{2}\)ta có:
\(A=-\frac{1}{\left(-\frac{1}{2}\right)^2}=-4\)
c, Để A<0 thì \(-\frac{1}{x^2}< 0\text{ mà }x^2>0\left(\text{vì x khác 0 ĐKXĐ}\right)\)
Với x khác 0 thì thỏa mãn!
a) ĐKXĐ: \(x\ne\pm3\)
\(A=\left(\frac{3-x}{x+3}.\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left(\frac{3-x}{x+3}.\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(=\frac{\left(3-x\right)\left(x+3\right)+x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)
\(=\frac{3\left(3-x\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{3x^2}\)
\(=-\frac{1}{x^2}\)