K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2023

a) Vì ��=2��AB=2BC suy ra ��=��2=��BC= AB/2=AD

ABCD là hình chữ nhật nên AB=DC suy ra 1/2AB=1/2DC do đó AI=DK=AD

Tứ giác AIKD có AI//DK, AI=DK nên tứ giác AIKD là hình bình hành 

Lại có AD=AI nên AIKD là hình thoi

Mà góc IAD= 90 độ do đó AIKD là hình vuông

Vậy tứ giác AIKD là hình vuông

Chứng minh tương tự cho tứ giác BIKC

Vậy tứ gáic BIKC là hình vuông

b) VÌ AIKD là hình vuông nên DI là tia phân giác góc ADK nên góc IDK = 45 độ

Tương tự góc ICK = 45 độ

Tam giác IDC cân có góc DIC = 90 độ nên là tam gaic vuông cân 

Vậy tam giác IDC là tam gáic  vuông cân

c) Vì AIKD, BCKI là các hình vuông nên hai đường chéo bằng nhau và cắt  nhau tại trung điểm mỗi đường nên SI=SK=DI/2 và IR=RK=IC/2

 =>ISKR là hình thoi

Lại có góc DIC= 90 độ nên ISKR là hình vuông

Vậy ISKR là hình vuông

 

 

a: Xét tứ giác AIKD có

AI//KD

AI=KD

AI=AD

=>AIKD là hình thoi

mà góc A=90 độ

nên AIKD là hình vuông

Xét tứ giác BIKC có

BI//KC

BI=KC

BI=BC

=>BIKC là hình thoi

mà góc B=90 độ

nên BIKC là hình vuông

b: Xét ΔDIC có

IK vừa là đường cao, vừa là trung tuyến

IK=1/2DC

Do đó: ΔDIC vuông cân tại I

c: AIKD là hình vuông

=>AK vuông góc ID tại trung điểm của mỗi đường  và AK=ID

=>AK=ID và AK vuông góc ID tại S

=>SI=SK

BIKC là hình vuông

=>CI vuông góc BK tại trung điểm của mỗi đường và CI=BK

=>CI vuông góc BK tại R

=>RI=RC=RK=RB

Xét tứ giác ISKR có

góc ISK=góc IRK=góc SIK=90 độ

Do đó: ISKR là hình chữ nhật

mà SI=SK

nên ISKR là hình vuông

25 tháng 8 2018

a/ Ta có

AB=BC và MA=MB; NB=NC => MB=NC

Xét hai tg vuông BMC và tg vuông CNC có

MB=NC (cmt)

BC=CD (cạnh hình vuông)

=> tg BMC= tg CND => ^BMC=^CND (1)

Trong tg vuông BMC có ^BCM+^BMC=90 (2)

Từ (1) và (2) => ^BCM+^CND=90 => ^CHN=90 => MC vuông góc DN

b/

Ta có AB=CD (cạnh hình vuông) và MA=MB; KC=KD => MA=KC

Mà MA//KC

=> AMCK là hình bình hành => AK//MC (3)

Xét tg CDH có ID=IH và KD=KC (đề bài) => IK là đường trung bình => IK//MC (4)

Từ (3) và (4) => AK trùng với IK => A; I; K thẳng hàng

c/

Xét tg ADH có

AI//MC mà MC vuông góc với DN => AI vuông góc với DN => AI là đường cso của tg ADH (5)

Ta có ID=IH (đề bài) => AI là trung tuyến của tg ADH (6)

Từ (5) và (6) => tg ADH cân tại A (tam giác có đường cao đồng thời là đường trung tuyến ... là tam giác cân)

a: Xét tứ giác BIKC có

BI//KC

BI=KC

Do đó: BIKC là hình bình hành

mà \(\widehat{B}=90^0\)

nên BIKC là hình chữ nhật

22 tháng 11 2016

A B C D N M

a) Ta có : 

AB // CD ( Vì ABCD là hcn ) 

mà N \(\in\) AB 

     M \(\in\) DC 

=) AN // MD 

Xét hcn ABCD có : 

M là tđ của cạnh DC 

NA // MD  

=) N là tđ của AB 

=) NA = NB 

mà AM = MC 

lại có : AB = DC ( vì ABCD là hcn ) 

=) AN = DM 

mà AN // DM 

=) ANMD là hbh 

mà góc M = 90o 

=) ANMD là hcn

b) 

Ta có : AN = MC ( Vì cx = MD ) 

mà AN // DC 

=) ANCM là hbh 

câu c) chút nữa mình làm  bn vẽ hình trước