K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Đáp án D

f ' x = 2 cos x + 2 cos 2 x = 2 cos x + 4 cos 2 x − 2.

f ' x = 0 ⇔ cos x = − 1 cos x = 1 2 ⇔ x = π + k 2 π x = ± π 3 + k 2 π k ∈ ℤ .

=>M=   3 3 2 , m=0

16 tháng 2 2016

a) Ta có:

\(M\left(x\right)=A\left(x\right)-2.B\left(x\right)+C\left(x\right)\)

\(=\left(2x^5-4x^3+x^2-2x+2\right)-2.\left(x^5-2x^4+x^2-5x+3\right)+\left(x^4+3x^3+3x^2-8x+4\frac{3}{16}\right)\)

\(=2x^5-4x^3+x^2-2x+2-2x^5+4x^4-2x^2+10x-6+x^4+4x^3+3x^2-8x+\frac{67}{16}\)

\(=\left(2x^5-2x^5\right)+\left(4x^4+x^4\right)+\left(-4x^3+4x^3\right)+\left(x^2-2x^2+3x^2\right)+\left(-2x+10x-8x\right)+\left(2-6+\frac{67}{16}\right)\)

\(=0+5x^4+0+2x^2+0+\frac{3}{16}\)

\(=5x^4+2x^2+\frac{3}{16}\)

b) Thay  \(x=-\sqrt{0,25}=-0,5\); ta có:

\(M\left(-0,5\right)=5.\left(-0,5\right)^4+2.\left(-0,5\right)^2+\frac{3}{16}\)

\(=5.0,0625+2.0,25+\frac{3}{16}\)

\(=\frac{5}{16}+\frac{8}{16}+\frac{3}{16}=\frac{16}{16}=1\)

c) Ta có:

\(x^4\ge0\) với mọi x

\(x^2\ge0\) với mọi x

\(\Rightarrow5x^4+2x^2+\frac{3}{16}>0\) với mọi x

Do đó không có x để M(x)=0

30 tháng 9 2015

ta tính 

\(y'=3x^2-6x=3x\left(x-2\right)\)

giải pt y'= 0 ta có \(3x\left(x-2\right)=0\) suy ra x=0 hoặc x=2

x y' -3 0 1 2 0 0 y + -55 -1 -3 - -

nhìn vào bảng bt ta có giái trị lớn nhất của hàm số =3 khi x=0, hàm số đạt giá trị nhỏ nhất =-55 khi x=-3

30 tháng 9 2015

hàm số đạt giái trị lớn nhất =-1 khi x=0, nhỏ nhất =-55 khi x=-3

29 tháng 4 2016

1) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/161) ( 2m - 1 )x² - 2mx + 1 = 0 
Ta có : 
b² - 4ac 
= (-2m)² - 4(2m - 1) 
= 4m² - 8m + 4 
= ( 2m - 2 )² 
Như vậy : (2m - 2)² ≥ 0 , ∀m ∈ IR 

Gọi x1 , x2 là 2 nghiệm của phương trình 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2m / (2m - 1) 
{ x1x2 = 1 / (2m - 1) 

Nếu nằm trong khoảng thì : 
-1 < x1 < x2 < 0 
Xét đoạn -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ pt sau 
{ (x1 + 1 )(x2 + 1) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 
Sử dụng Vi-ét 
=> 1/(2m - 1) + 2m/(2m - 1) + 1 > 0 
=> 2m / (2m - 1) + 2 > 0 

<=> ( 1 + 2m + 2m - 1 ) / (2m - 1) > 0 
<=> [2m + 2(2m - 1)] / (2m - 1) > 0 

<=> 4m / ( 2m - 1 ) > 0 
<=> ( 2m + 4m - 2 ) / ( 2m - 1 ) > 0 

<=> 4m / (2m - 1) > 0 
<=> ( 6m - 2 ) / ( 2m - 1 ) > 0 

Vẽ bảng xét dấu 
<=> m < 0 V m > 1/2 (1) 
<=> m < 1/2 V m > 3 (2) 

Xét đoạn x1 < x2 < 0 
{ x1 + x2 < 0 
{ x1x2 > 0 

{ 2m / (2m - 1) < 0 
{ 1 / (2m - 1) > 0 
Xét bảng xét dấu 
<=> 0 < m < 1/2 (3) 
<=> m > 1/2 (4) 

=> m không thuộc khoảng nào cả 
=> Vô nghiệm 

2) x² + 2(m + 3)x + 4m + 12 = 0 
Ta có 
b² - 4ac 
= [ 2(m + 3) ]² - 4(4m + 12) 
= 4(m + 3)² - 16m - 48 
= 4(m² + 6m + 9) - 16m - 48 
= 4m² + 24m + 36 - 16m - 48 
= 4m² + 8m - 12 
Để pt có nghiệm m < -1 V m > 3 

Gọi x1 , x2 là 2 nghiệm của pt 
Áp dụng hệ thức Vi-ét 
{ x1 + x2 = -2(m + 3) 
{ x1x2 = 4m + 12 

Ta đã có -1 < x1 < x2 
<=> 0 < x1 + 1 < x2 + 1 

Ta lập hệ bất pt sau : 
{ ( x1 + 1 )(x2 + 1 ) > 0 
{ x1 + 1 + x2 + 1 > 0 

{ x1 + x1x2 + x2 + 1 > 0 
{ x1 + x2 + 2 > 0 

{ -2(m + 3) + 4m + 12 + 1 > 0 
{ 4m + 12 + 2 > 0 

{ -2m - 6 + 4m + 12 + 1 > 0 
{ 4m + 14 > 0 

{ 2m > -7 
{ 4m > -14 

{ m > -7/2 
{ m > -7/2 
Hợp nghiệm lại 
m ∈ ( -7/2 ; -1 ) ∪ ( -3 ; +∞ ) 

3) 2x² + (2m - 1)x + m - 1 = 0 
Ta có 
b² - 4ac = (2m - 1)² - 4.2.(m - 1) 
= 4m² - 4m + 1 - 8m + 8 
= 4m² - 12m + 9 
= ( 2m - 3 )² 
Mà ( 2m - 3 )² ≥ 0 , ∀m ∈ IR 

Gọi x1 và x2 là 2 nghiệm của pt 

x1 = [-(2m - 1) - 2m +3 ]/ 2 = ( -4m + 2 ) /2 = -2m + 1 
x2 = [-(2m - 1) +2m - 3 ]/ 2 = -2/2 = -1 

Thế 
3x1 - 4x2 = 11 
3( -2m + 1 ) - 4.(-1) = 11 
<=> -6m + 3 + 4 = 11 
<=> -2m = 4 
<=> m = -2 

4) x² - 2(m - 3)x - 2(m - 1) = 0 
Ta có 
[ 2(m - 3)]² - 4.(-2)(m - 1) 
= 4(m - 3)² + 8(m - 1) 
= 4(m² - 6m + 9) + 8m - 8 
= 4m² - 24m + 36 + 8m - 8 
= 4m² - 16m + 28 
Xét tiếp 
(-16)² - 4.4.28 = -192 < 0 mà 4m² là số dương nên 4m² - 16m + 28 > 0 , ∀m ∈ IR 

Áp dụng hệ thức Vi-ét 
{ x1 + x2 = 2(m - 3) 
{ x1x2 = -2(m - 1) 

<=> ( x1 + x2 )² = 4(m - 3)² 
<=> x1² + 2x1x2 + x2² = 4(m² - 6m + 9) 
<=> x1² + x2² - (m - 1) = 4m² - 24m + 36 
<=> x1² + x2² = 4m² - 24m + 36 + m - 1 
<=> x1² + x2² = 4m² - 23m + 35 
Để x1² + x2² Min thì 4m² - 23m + 35 phải Min 
<=> 4m² - 23/4.2.2m + 529/16 + 31/16 
<=> ( 2m - 23/4 )² + 31/16 
Mà ( 2m - 23/4 )² ≥ 0 , ∀m ∈ IR 
<=> ( 2m - 23/4 )² + 31/16 ≥ 31/16 > 0 
Vậy đạt Min khi đó "=" xảy ra : 2m - 23/4 = 0 
<=> m = 23/8 

Vậy m = 23/8 thì x1² + x2² đạt Min 
=> Amin = x1² + x2² = 4(23/8)² - 23(23/8) + 35 = 31/16 

1 tháng 5 2016

bn dùng bao nhiêu thời gian để viết chỗ đó thế

5 tháng 10 2015

hoành độ giao điểm là nghiệm của pt

\(x^3-3mx^2+3\left(2m-1\right)x+1=2mx-4m+3\Leftrightarrow x^3-3mx^2+4mx-3x-2+4m=0\Leftrightarrow x^3-3x-2-m\left(3x^2-4x+4\right)=0\)

giải hệ pt ta có \(C_m\) luôn đi qua điểm A là nghiệm của hệ pt sau

\(\begin{cases}3x^2-4x+4=0\\x^3-3x-2=0\end{cases}\)

ta đc điều phải cm

27 tháng 10 2019

.

24 tháng 4 2016

Q=20-/3-x/ lớn nhất khi /3-x/ nhỏ nhất 

nên /3-x/=0(vì /3-x/ luôn >=0 dấu)

     3-x=0

        x=3

24 tháng 4 2016

D=4/\x-2\+2 lớn nhất khi và chỉ khi \x-2\+2 nhỏ nhất,khác 0 và lớn hơn=2(vì \x-2\ luôn EN)

nên \x-2\+2=2

       \x-2\=0

       x-2=0

      x=2

        

 

2 tháng 4 2016

\(M=\frac{6n-3}{4n-6}=\frac{6n-9+6}{4n-6}=\frac{3\left(2n-3\right)}{2\left(2n-3\right)}+\frac{6}{4n-6}=\frac{3}{2}+\frac{6}{4n-6}\)

Do đó, để M có giá trị lớn nhất thì 6/(4n-6) có giá trị lớn nhất

=>4n-6 có giá trị nhỏ nhất(nEN)

=>4n-6=2

4n=6+2

4n=8

n=8/4=2

Nếu n=2 thì M=\(\frac{3}{2}+\frac{6}{4\cdot2-6}=\frac{3}{2}+\frac{6}{8-6}=\frac{3}{2}+3=\frac{3}{2}+\frac{6}{2}=\frac{9}{2}=4,5\)

Vậy M đạt giá trị lớn nhất là 4,5 tại n=2

31 tháng 7 2022

 

 

30 tháng 4 2016

Ta có:

\(M=\frac{2014-x}{x-2013}=\frac{2013-x+1}{x-2013}=\frac{2013-x}{x-2013}+\frac{1}{x-2013}=\frac{-\left(x-2013\right)}{x-2013}+\frac{1}{x-2013}=-1+\frac{1}{x-2013}\)

Để M có GTNN thì \(\frac{1}{x-2013}\) phải có GTNN

=> \(\frac{1}{x-2013}\) phải là số âm lớn nhất

Mà 1 là số nguyên dương không đổi nên x - 2013 = - 1

=> x = 2012

Khi đó, ta có:

\(M=\frac{2014-2012}{2012-2013}=\frac{2}{-1}=-2\)

Vậy M đạt GTNN là - 2 <=> x = 2012

30 tháng 4 2016

chờ mình chút

1 tháng 4 2016

Cho hàm số y=x33m2x2+m. Tìm m

để đồ thị hàm số có cực đại, cực tiểu.

  1. m0
  2. m>0 (chọn câu này là thành câu trắc nghiệm hoàn chỉnh nhé hoc24)
  3. m<0
  4. m=0

Cho em hỏi em có được 3GP không ạ !

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu