K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Giải thích: Đáp án C

Phương pháp: Sử dụng kiến thức về tổng hợp 2 dao động điều hòa

Cách giải:

Theo đề bài ta có PT dao động của hai chất điểm M và N là:  

=> Độ lệch pha giữa hai dao động là π/2 (rad)

Ta biểu diễn hai dao động này bằng véc tơ quay:

Hai dao động có cùng tần số nên hai véc tơ sẽ quay với cùng tốc độ góc (nghĩa là tam giác OAMAN sẽ không bị biến dạng trong quá trình quay).

Khoảng cách ban đầu giữa M và N là d (như hình vẽ)

Khoảng cách giữa M và N lớn nhất hai véc tơ quay đến vị trí để cạnh huyền AMAN song song với Ox

(như hình vẽ)

Khi đó thì chất điểm N cách gốc tọa độ đoạn h (như hình vẽ)

Dựa vào hệ thức lượng trong tam giác vuông ta có: 

6 tháng 6 2016

Phương trình khoảng cách giữa 2 vật :
\(\Delta x=10\cos\left(\pi t\right)cm\)
Tại thời điểm 2 vật đi ngang qua nhau tức là cùng li độ.
Thời gian ngắn nhất chúng cách nhau thỏa mãn tại thời điểm t1, chúng cùng đi qua VTCB (tốc độ cực đại)
Thời gian \(\Delta x\)từ 0 đến 5cm xác định trên đường tròn 

\(t=\frac{T}{12}=\frac{1}{6}s\)

Chọn A 

15 tháng 6 2016

Hỏi đáp Vật lý

24 tháng 7 2016

Ta có:  \(\begin{cases}\Delta l_1=l_1-l_0=\frac{g}{\omega^2_1}\\\Delta l_2=l_2-l_0=\frac{g}{\omega^2_2}\end{cases}\)\(\Rightarrow\frac{\omega^2_2}{\omega^2_1}=\frac{21-l_0}{21,5-l_0}=\frac{1}{1,5}\)\(\Rightarrow l_0=20\left(cm\right)\)

\(\Rightarrow\Delta l_1=0,01\left(m\right)=\frac{g}{\omega^2_1}\Rightarrow\omega_1=10\pi\left(rad/s\right)\)

KQ = 3,2 cm

20 tháng 7 2016

\(\omega_1=\frac{2\pi}{T_1}=\frac{10\pi}{3}\)\(\omega_2=\frac{2\pi}{T_2}=\frac{10\pi}{9}\)
\(\varphi_2=\omega_2t;\omega_1t=\pi-\varphi_2\)

\(\Rightarrow t=\frac{\pi}{\omega_1+\omega_2}=0,225\left(s\right)\)

23 tháng 8 2016

Ta có \lambda = \frac{9}{f} = 2
Và \frac{- S_1S_2}{\lambda } < k < \frac{ S_1S_2}{\lambda } (k \epsilon N) => có 9 điểm

V
violet
Giáo viên
11 tháng 5 2016

Hai điểm cách gần nhau nhất là: \(\dfrac{\lambda}{2}=10\Rightarrow \lambda=20cm\)

M O1 O2 d1 d2

M dao động cực đại và cách O2 xa nhất khi M nằm ở vân ngoài cùng về phía O1.

Vị trí vân cực đại này là: \([\dfrac{196}{2.20}]=4\)

\(\Rightarrow d_2-d_1=4.\lambda=4.20=80cm\)

\(\Rightarrow d_2= d_1+80=196+80=276cm\)

Chọn D

V
violet
Giáo viên
11 tháng 5 2016

À, mình làm nhầm, vị trí vân cực đại này phải là: \([\dfrac{196}{20}]=9\)

\(\Rightarrow d_2-d_1=9.\lambda=9.20=180cm\)

\(\Rightarrow d_2=376cm\)

11 tháng 9 2015

 \(\lambda = v/f = 80/20 = 4cm.\)

\(\triangle \varphi = \pi-0=\pi.\)

Nhận xét: \(BM-AM=(BI+IM)-(AI-IM)=2MI\)

\( A_M = |2a\cos\pi(\frac{d_2-d_1}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{BM-AM}{\lambda}-\frac{\triangle\varphi}{2\pi})|\\=|2a\cos\pi(\frac{2MI}{\lambda}-\frac{\triangle\varphi}{2\pi})| = |2a\cos\pi(\frac{6}{4}-\frac{\pi}{2\pi})| = |-2a|=2a=10 mm.\)

23 tháng 4 2017

A

12 tháng 7 2016

Ta có $x_1=x_{12}-x_2=x_{12}-(x_{23}-(x_{13}-x_1)$

$\Rightarrow$ $2x_1=x_{12}-x_{23}+x_{13}$. Bấm máy tính ta được

${x_1}={3\sqrt{6}}\cos\left({\pi t + \dfrac{\pi}{12}} \right)$

${x_3}={3\sqrt{2}}\cos\left({\pi t + \dfrac{7\pi}{12}} \right)$

Suy ra hai dao động vuông pha, như vậy khi x1 đạt giá trị cực đại thì x3 bằng 0.

banh

25 tháng 11 2016

cách bấm máy để ra phương trình dao động làm như thế nào vậy ạ