Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1717}{2929}=\frac{17.101}{29.101}=\frac{17}{29}\left(1\right)\)
\(\frac{171717}{292929}=\frac{17.10101}{29.10101}=\frac{17}{29}\left(2\right)\)
từ (1) và (2) => đpcm
=> x + 909 = 1899+1234
=> x + 909 = 3133
=> x = 3133 - 909
=> x =2224
vậy x =2224
x+909-1234=1899
x+909 =1899+1234
x+909 =3133
x =3133-909
x =2324
mk nha
C1: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{47}{45}\cdot\frac{3}{8}=\frac{141}{360}=\frac{47}{120}\)
C2: \(\left(\frac{3}{5}+\frac{4}{9}\right)\cdot\frac{3}{8}=\frac{3}{5}\cdot\frac{3}{8}+\frac{4}{9}\cdot\frac{3}{8}=\frac{9}{40}+\frac{12}{72}=\frac{47}{120}\)
:V toán lp 3 cơ ak
A = \(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\)
\(A\cdot3=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\)
\(A\cdot3-A=\left(\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}\right)-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+...+\frac{1}{4347}\right)\)
\(A\cdot2=\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+...+\frac{1}{1449}-\frac{1}{2}-\frac{1}{6}-\frac{1}{18}-...-\frac{1}{4347}\)
\(A\cdot2=\frac{3}{2}-\frac{1}{4347}\)
\(A\cdot2=\frac{13039}{8694}\)
\(A=\frac{13039}{8694}:2\)
\(A=\frac{13039}{17388}\)
Kết quả hơi lớn nên kiểm tra lại đề :))
Vì \(\frac{1}{4}=\frac{1x4}{5x4}=\frac{4}{20}\)và \(\frac{2}{5}=\frac{2x4}{5x4}=\frac{8}{20}\)
Vì 4 < 5,6,7 < 8
=> Vậy phân số đó là : \(\frac{5}{20},\frac{6}{20},\frac{7}{20}\)
Nhưng vì phân số đó phải tối giản nên phân số cần tìm là : \(\frac{7}{20}\)
\(\frac{1}{4}< \frac{a}{b}< \frac{2}{5}\)
\(\Leftrightarrow\frac{5}{20}< \frac{a}{b}< \frac{8}{20}\)
\(\Rightarrow\frac{a}{b}=\frac{6}{20};\frac{7}{20}\)
\(\Rightarrow\frac{a}{b}=\frac{3}{10};\frac{7}{20}\)
_ Lấy tử của 23/47 và mẫu của 27/41 ta được phân số 23/41
Mà 23/47 < 23/41; 23/41 < 27/41
=> 23/47 < 27/41
_ 1999/2001<1 ; 12/11>1
=> 1999/2001 < 12/11
hình như cái đề saisai sao ấy bạn ak ??????
tk tui nha
mơn mọi người nhiều lắm !!!!!!!!
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow ad=bc\)
\(\Rightarrow ad+bd=bc+bd\)
\(\Rightarrow d\left(a+b\right)=b\left(c+d\right)\)
\(\Rightarrow\frac{a+b}{b}=\frac{c+d}{d}\)
Đặt a/b = c/d = k => a = bk ; c = dk
\(\Rightarrow\hept{\begin{cases}\frac{bk+b}{b}=\frac{b\left(k+1\right)}{b}=k+1\left(1\right)\\\frac{dk+d}{d}=\frac{d\left(k+1\right)}{d}=k+1\left(2\right)\end{cases}}\)
Từ (1) và (2) => đpcm