K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

\(\frac{1}{1\times3}+\frac{2}{3\times5}+..........+\frac{2}{99\times101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+........+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

15 tháng 4 2016

học trường gì

15 tháng 4 2016

\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{99\cdot101}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)

\(=\frac{1}{3}-\frac{1}{101}\)

\(=\frac{98}{303}\)

Tích mk nha bn !!!! ^_^

2016/2017 nhé 

k cho mình nha

28 tháng 4 2017

cảm ơn bạn

7 tháng 5 2019

\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{49\cdot51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{51}=\frac{17}{51}-\frac{1}{51}=\frac{16}{51}\)

\(B=5\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...+\frac{1}{100}-\frac{1}{103}\right)\)

\(\Rightarrow B=5\cdot\left(1-\frac{1}{103}\right)=5\cdot\frac{102}{103}=\frac{510}{103}\)

\(C=5\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}\right)\)

\(\Rightarrow C=5\cdot\left(1-\frac{1}{101}\right)=5\cdot\frac{100}{101}=\frac{500}{101}\)

7 tháng 5 2019

\(B=\frac{5}{1.4}+\frac{5}{4.7}+...+\frac{5}{100.103}\)

\(B=\frac{5}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)

\(B=\frac{5}{3}\left(1-\frac{1}{103}\right)\)

\(B=\frac{5}{3}.\frac{102}{103}=\frac{170}{103}\)

\(C=\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}\)

\(C=\frac{5}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(C=\frac{5}{2}\left(1-\frac{1}{101}\right)\)

\(C=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

4 tháng 7 2018

\(B=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+........+\frac{2}{57.59}\)

\(B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-.........-\frac{1}{59}\)

\(B=1-\frac{1}{59}\)

\(B=\frac{59}{59}-\frac{1}{59}=\frac{58}{59}\)

Vậy B = \(\frac{58}{59}\)

Lưu ý: Dấu "." là dấu nhân

4 tháng 7 2018

\(B=\frac{2}{1.3}+\frac{1}{3.5}+\frac{2}{5.7}+...+\frac{1}{57.59}\)

\(B=1.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{57}-\frac{5}{59}\right)\)

\(B=1.\left(1-\frac{1}{59}\right)\)

\(B=1.\frac{58}{59}\)

\(B=\frac{58}{59}\)

24 tháng 3 2017

\(\frac{2^2}{1x3}\)\(\frac{4^2}{3x5}\)\(\frac{6^2}{5x7}\) x \(\frac{8^2}{7x9}\)

\(\frac{4}{3}\)\(\frac{16}{15}\)\(\frac{36}{35}\)\(\frac{64}{63}\)

\(1.486077098\)

26 tháng 3 2017

a) Đặt \(A=\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}\)

\(\Rightarrow A=\left(1^2+2^2+..........+100^2\right)\)\(.\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{100.101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+......+100^2\right).\left(1-\frac{1}{101}\right)\)

\(\Rightarrow A=\left(1^2+2^2+.....+100^2\right).\left(\frac{100}{101}\right)\)(a)

Đặt \(M=\left(1^2+2^2+........+100^2\right)\)

\(\Rightarrow M=1.1+2.2+.....+100.100\)

\(\Rightarrow M=1.\left(2-1\right)+2.\left(3-1\right)+....+100.\left(101-1\right)\)

\(\Rightarrow M=\left(1.2-1\right)+\left(2.3-2\right)+.....+\left(100.101-100\right)\)

\(\Rightarrow M=\left(1.2+2.3+.....+100.101\right)-\left(1+2+......+100\right)\)

\(\Rightarrow M=\left(1.2+2.3+......+100.101\right)-5050\)(1)

Đặt \(N=1.2+2.3+....+100.101\)

\(\Rightarrow3.N=1.2.3+2.3.3+......+100.101.3\)

\(\Rightarrow3N=1.2.\left(3-0\right)+2.3.\left(4-1\right)+......+100.101.\left(102-99\right)\)

\(\Rightarrow3N=\left(1.2.3-0\right)+\left(1.2.3-2.3.4\right)+.......+\left(100.101.102-100.101.99\right)\)

\(\Rightarrow3N=100.101.102-0\)

\(\Rightarrow N=343400\)

Thay N = 343400 vào 1) ta được:

M = 343400 - 5050 

=> M = 338350

Thay M = 338350 Vào (a) ta được:

A = 338350 . \(\frac{100}{101}\)

=> \(A=\frac{33835000}{101}\)

Vậy \(\frac{1^2}{1.2}+\frac{2^2}{2.3}+.........+\frac{100^2}{100.101}=\frac{33835000}{101}=335000\)

b) Đặt \(B=\frac{2^2}{1.3}+\frac{3^2}{2.4}+..........+\frac{59^2}{58.60}\)

\(\Rightarrow B=\left(2^2+3^2+........+59^2\right).\left(\frac{1}{1.3}+\frac{1}{2.4}+.....+\frac{1}{58.60}\right)\)

Đặt \(G=2^2+3^2+.........+59^2\)VÀ \(H=\frac{1}{1.3}+\frac{1}{2.4}+.........+\frac{1}{58.60}\)

\(\Rightarrow G=2.2+3.3+.......+59.59\) VÀ \(2.H=\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{58.60}\)

Rồi bạn làm như ở phần a) ý

28 tháng 7 2015

a) Ta có: \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{11.13}=1\text{-}\frac{1}{3}+\frac{1}{3}\text{-}\frac{1}{5}+...+\frac{1}{11}\text{-}\frac{1}{13}=1\text{-}\frac{1}{13}=\frac{12}{13}\)

Thay vào ta có:

\(\frac{12}{13}+x=\frac{24}{13}\Rightarrow x=\frac{24}{13}\text{-}\frac{12}{13}\Rightarrow x=\frac{12}{13}\)

10 tháng 4 2018

ngày mai mik làm đc ko

10 tháng 4 2018

ok ai giải được giúp mik nha chiều mai mik phải nộp rồi

25 tháng 7 2018

Câu a

\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)

Câu b

\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)

\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)

\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)