K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(x\right)=x^5-3x^4+2x^3-x^2-4x+1\)

\(g\left(x\right)=x^4-5x^3+2x-1\)

\(f\left(x\right)+g\left(x\right)=x^5-2x^4-3x^3-x^2-2x\)

b: \(A\left(x\right)=f\left(x\right)+g\left(x\right)=x^5-2x^4-2x^3-x^2-2x\)

\(A\left(0\right)=0^5-2\cdot0^4-2\cdot0^3-0^2-2\cdot0=0\)

=>x=0 là nghiệm của A(x)

16 tháng 5 2017

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

f(x)=

23 tháng 8 2018

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

25 tháng 1 2017

f(x) + g(x)

= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) + (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)

= x5​ - 3x2 + 7x4 - 9x3 + x2 - 1/4x + 5x4 - x5 +x2 - 2x3 + 3x2 - 1/4

=12x4 - 11x3 + 2x2 - 1/4x - 1/4

f(x) - g(x)

= (x5 - 3x2 + 7x4 - 9x3 + x2 - 1/4x) - (5x4 - x5 +x2 - 2x3 + 3x2 - 1/4)

=​ = x5​ - 3x2 + 7x4 - 9x3 + x2 - 1/4x - 5x4 + x5 - x2 + 2x3 - 3x2 + 1/4

= 2x5 + 2x4 - 7x3 - 6x2 - 1/4x + 1/4

7 tháng 4 2019

a) \(f\left(x\right)=5x^3-7x^2+x+7+4x^5\)

\(f\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7+4.\left(-1\right)^5\)

\(f\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7+\left(-4\right)\)

\(f\left(-1\right)=-10\)

\(\Rightarrow f\left(x\right)=-10\)

\(g\left(x\right)=4x^5-3x^3-7x^2+2x+5\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=5\)

\(\Rightarrow g\left(x\right)=0\)

\(h\left(x\right)=x^2-4x-5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4.\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

\(\Rightarrow h\left(x\right)=-\frac{11}{4}\)

7 tháng 4 2019

\(f\left(-1\right)=5\left(-1\right)^3-7\left(-1\right)^2+\left(-1\right)+7+4\left(-1\right)^5\)

\(f\left(-1\right)=-5-7-1+7-4\)

\(f\left(-1\right)=-10\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=0-0-0+0+5\)

\(g\left(0\right)=5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}+2-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

15 tháng 5 2017

a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến

f(x)=x2+2x37x596x7+x3+x2+x54x2+3x7

= -9 - 2x2 + 3x3 - 6x5 - 3x7

g(x)=x5+2x35x8x7+x3+4x25x7+x44x2x612

= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8

h(x)=x+4x55x6x7+4x3+x22x7+x64x27x7+x

= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7

b) Tính f(x) + g(x) h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)

= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7

= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8

5 tháng 4 2017

a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)

\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)

b/

\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)

\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)

\(=7x-7\)

Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)

\(\Leftrightarrow7x=7\Rightarrow x=1\)

Vậy để...............

c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)

hay \(\left(x+1\right)^2+2>0\)

\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)

28 tháng 3 2018

Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)

Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)

23 tháng 6 2020

a) A(x) = f(x) + g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) + ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 + 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x

= ( 2x^3 - 4x^3 + 5x^3 ) + ( 3x - 9x ) + ( 1/2 + 0,2 ) + ( -5x^4 + 3x^4 ) - 7x^2

= 3x^3 - 6x + 0,7 - 2x^4 - 7x^2

B(x) = f(x) - g(x) = ( 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 ) - ( 3x^4 + 0,2 - 7x^2 + 5x^3 - 9x )

= 2x^3 + 3x - 4x^3 + 1/2 - 5x^4 - 3x^4 - 0,2 + 7x^2 - 5x^3 + 9x

= ( 2x^3 - 4x^3 - 5x^3 ) + ( 3x + 9x ) + ( 1/2 - 0,2 ) + ( -5x^4 - 3x^4 ) + 7x^2

= -7x^3 + 12x + 0,3 -8x^4 + 7x^2