K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)

Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)

27 tháng 12 2019

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

5 tháng 4 2017

a/ \(f\left(-\dfrac{1}{2}\right)=4.\left(-\dfrac{1}{2}\right)^2+3.\left(-\dfrac{1}{2}\right)-2\)

\(=4\cdot\dfrac{1}{4}-\dfrac{3}{2}-2=1-\dfrac{3}{2}-2=-\dfrac{5}{2}\)

b/

\(f\left(x\right)+g\left(x\right)-h\left(x\right)=4x^2+3x-2+x^2+2x+3-5x^2+2x-8\)

\(=\left(4x^2+x^2-5x^2\right)+\left(3x+2x+2x\right)+\left(-2+3-8\right)\)

\(=7x-7\)

Ta có: \(f\left(x\right)+g\left(x\right)-h\left(x\right)=7x-7=0\)

\(\Leftrightarrow7x=7\Rightarrow x=1\)

Vậy để...............

c/ \(g\left(x\right)=x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\)

\(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+2\ge2\)

hay \(\left(x+1\right)^2+2>0\)

\(\Rightarrow g\left(x\right)\) vô nghiệm (đpcm)

16 tháng 5 2017

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

f(x)=

23 tháng 8 2018

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

15 tháng 5 2017

a) Thu gọn, sắp xếp các đa thức theo lũy thừa tăng của biến

f(x)=x2+2x37x596x7+x3+x2+x54x2+3x7

= -9 - 2x2 + 3x3 - 6x5 - 3x7

g(x)=x5+2x35x8x7+x3+4x25x7+x44x2x612

= -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8

h(x)=x+4x55x6x7+4x3+x22x7+x64x27x7+x

= 2x - 3x2 + 4x3 +4x5 -4x6 - 10x7

b) Tính f(x) + g(x) h(x) = ( -9 - 2x2 + 3x3 - 6x5 - 3x7 ) + (-12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 ) - (2x - 3x2 + 4x3 +4x5 -4x6 - 10x7)

= - 9 - 2x2 + 3x3 - 6x5 - 3x7 -12 + 3x3 + x4 + x5 - x6 - 6x7 - 5x8 - 2x + 3x2 - 4x3 - 4x5 + 4x6 + 10x7

= -21 - 2x + x2 + 2x3 + x4 - 9x5 + 3x6 + x7 - 5x8

Bài này chill ha ? nhưng ko ai lm cx lạ :vvv

a, Ta có : \(f\left(1\right)=5.1-1^3+3.1^2-1=5-1+3-1=6\)

\(g\left(-1\right)=-\left(-1\right)^3+3\left(-1\right)^2+2\left(-1\right)-3=1+3-2-3=-1\)

\(f\left(1\right)-g\left(-1\right)=6-\left(-1\right)=7\)

b, Ta có : 

\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(5x-x^3+3x^2-1\right)-\left(-x^3+3x^2+2x-3\right)\)

\(=5x-x^3+3x^2-1+x^3-3x^2-2x+3=3x+2\)

c, \(\left|h\left(x\right)-5\right|+2x=2,5\Leftrightarrow\left|3x+2-5\right|+2x=2,5\)

\(\Leftrightarrow\left|3x-3\right|+2x=2,5\Leftrightarrow\left|3x-3\right|=2,5-2x\)

Chia 2 TH nhá vì lười :3 (nhưng ko dám chắc nha men) 

31 tháng 5 2020

cậu làm đúng r mk đăng chs chs thôi .

3 tháng 6 2015

a)f(x)=-x5-7x4-2x3+x2+4x+9

g(x)=x5+7x4+2x3+2x2-3x-9

b)h(x)=f(x)+g(x)

=(-x5-7x4-2x3+x2+4x+9)+(x5+7x4+2x3+2x2-3x-9)

=-x5-7x4-2x3+x2+4x+9+x5+7x4+2x3+2x2-3x-9

=-x5+x5-7x4+7x4-2x3+2x3+x2+2x2+4x-3x+9-9

=3x2+x

Vậy h(x)=3x2+x

c)ta có h(x)=0

=>3x2+x=0

x(3x+1)=0

x=0 hoặc 3x+1=0

x=0 hoặc x=-1/3

vậy nghiệm của đa thức h(x) là x=0 hoặc x=-1/3

6 tháng 3 2019

1. a)

\(h\left(0\right)=1+0+0+....+0=1\)

\(h\left(1\right)=1+\left(1+1+....+1\right)\)

( x thừa số 1)

\(=x+1\)

Với x là số chẵn

\(h\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{x-1}+\left(-1\right)^x=1-1+1-1+...-1+1-1=-1\)

Với x là số lẻ

\(h\left(-1\right)=1-1+1-1+1-....+1-1\) =0

b) Tương tự

7 tháng 4 2019

a) \(f\left(x\right)=5x^3-7x^2+x+7+4x^5\)

\(f\left(-1\right)=5.\left(-1\right)^3-7.\left(-1\right)^2+\left(-1\right)+7+4.\left(-1\right)^5\)

\(f\left(-1\right)=\left(-5\right)-7+\left(-1\right)+7+\left(-4\right)\)

\(f\left(-1\right)=-10\)

\(\Rightarrow f\left(x\right)=-10\)

\(g\left(x\right)=4x^5-3x^3-7x^2+2x+5\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=5\)

\(\Rightarrow g\left(x\right)=0\)

\(h\left(x\right)=x^2-4x-5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4.\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

\(\Rightarrow h\left(x\right)=-\frac{11}{4}\)

7 tháng 4 2019

\(f\left(-1\right)=5\left(-1\right)^3-7\left(-1\right)^2+\left(-1\right)+7+4\left(-1\right)^5\)

\(f\left(-1\right)=-5-7-1+7-4\)

\(f\left(-1\right)=-10\)

\(g\left(0\right)=4.0^5-3.0^3-7.0^2+2.0+5\)

\(g\left(0\right)=0-0-0+0+5\)

\(g\left(0\right)=5\)

\(h\left(-\frac{1}{2}\right)=\left(-\frac{1}{2}\right)^2-4\left(-\frac{1}{2}\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}-\left(-2\right)-5\)

\(h\left(-\frac{1}{2}\right)=\frac{1}{4}+2-5\)

\(h\left(-\frac{1}{2}\right)=-\frac{11}{4}\)

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!