K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.

Có BM = BC/2 = 5cm

Áp dụng định lí Pytago trong tam giác vuông ABM có:

AM2 = AB2 - BM2 = 132 - 52 = 144 ⇒ AM = 12cm. Chọn A

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0
AH
Akai Haruma
Giáo viên
29 tháng 4 2018

Lời giải:

a)

Vì tam giác $ABC$ cân tại $A$ nên $AB=AC$ và \(\widehat{ABC}=\widehat{ACB}\) hay \(\widehat{ABM}=\widehat{ACM}\)

Xét tam giác $AMB$ và $AMC$ có:

\(\left\{\begin{matrix} \widehat{ABM}=\widehat{ACM}\\ BM=CM\\ AB=AC\end{matrix}\right.\Rightarrow \triangle AMB=\triangle AMC(c.g.c)\)

b) Từ hai tam giác bằng nhau trên suy ra \(\widehat{AMB}=\widehat{AMC}\)

\(\widehat{AMB}+\widehat{AMC}=\widehat{BMC}=180^0\)

Suy ra \(\widehat{AMB}=\widehat{AMC}=90^0\Rightarrow AM\perp BC\)

Do đó áp dụng định lý Pitago:
\(AB^2=AM^2+BM^2\)

\(\Leftrightarrow AB^2=AM^2+(\frac{BC}{2})^2\)

\(\Leftrightarrow 13^2=AM^2+5^2\Rightarrow AM=12\) (cm)

Theo tính chất đường trung tuyến thì \(AG=\frac{2}{3}AM=\frac{2}{3}.12=8\) (cm)

4 tháng 5 2018

Fan vuơng túân khải à 😒😁

3 tháng 5 2018

Xét \(\Delta MBE\)và \(\Delta MAE\)ta có :

\(ME\): cạnh chung               (1)

Góc \(MEB=MEA=90\)độ      (2)

\(MB=MA\left(GT\right)\)   (3)

Từ (1) ; (2) và (3) => \(\Delta MBE=\Delta MAE\)(cạnh-góc-cạnh)

\(\Rightarrow MB=MA\)( cặp cạnh tương ứng)

3 tháng 5 2018

b)  Áp dụng định lí Py-ta-go cho tam giác vuông BAC có:

\(AB^2+AC^2=BC^2\)

\(\Rightarrow8^2+6^2=BC^2\)

\(\Rightarrow64+36=BC^2\)

\(\Rightarrow100=BC^2\)

\(\Rightarrow\)BC= Căn 100

\(\Rightarrow BC=10\)

Vậy BC = 10 cm .

3 tháng 5 2017

A B C M

a)Xét tam giác AMB và tam giác AMC có:

AM chung

AB=AC(do tam giác ABC cân tại A)

BM=MC(đường trung tuyến AM cắt BC tại M)

=>tam giác AMB = tam giác AMC (c.c.c)

b) tam giác AMB = tam giác AMC => góc AMB=góc AMC (2 góc tương ứng)

mà góc AMB+góc AMC=180o (2 góc kề bù) => góc AMB=góc AMC=90o =>AM vuông góc với BC

c) Có: BM=MC=1/2 BC (đường trung tuyến AM cắt BC tại M) => BM=(1/2).10=5(cm)

Áp dụng định lí Py-ta-go cho tam giác vuông ABM ta được: AM2+BM2=AB2 <=> AM2+52=82

<=>AM2=82-52=64-25=39 <=> AM\(=\sqrt{39}\)

Bài 1.  Cho tam giác ABC có AB < AC vẽ trung tuyến AD Trên tia đối của tia DA lấy điểm M sao cho DM = DA.  a) c/m tam giác ABD = tam giác MCD; CM = BA  b) c/m BM=AC ; BM//AC  c) c/m \(AD < AB+AC/2\)Bài 2. Cho \(f(x) = ax^2 + bx + c \). Xác định a,b,c biết f(0)=1, f(1)=2, f(2)=4Bài 3. Bộ 3 số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông A. 3cm, 9cm, 14cm                    B. 2cm, 3cm, 5cmC. 4cm, 9cm, 12cm ...
Đọc tiếp

Bài 1.  Cho tam giác ABC có AB < AC vẽ trung tuyến AD Trên tia đối của tia DA lấy điểm M sao cho DM = DA.

  a) c/m tam giác ABD = tam giác MCD; CM = BA

  b) c/m BM=AC ; BM//AC

  c) c/m \(AD < AB+AC/2\)

Bài 2. Cho \(f(x) = ax^2 + bx + c \). Xác định a,b,c biết f(0)=1, f(1)=2, f(2)=4

Bài 3. Bộ 3 số đo nào sau đây có thể là độ dài ba cạnh của một tam giác vuông

 A. 3cm, 9cm, 14cm                    B. 2cm, 3cm, 5cm

C. 4cm, 9cm, 12cm                     D. 6cm, 8cm, 10cm

Bài 4. Biểu thức nào dưới đây được gọi là đơn thức

A. \((2+x) x^2\)       B. \(2+x^2\)       C. \(-2\)       D. \(2y +1\)

Bài 5. Tam giác MNP có điểm O cách đều 3 đỉnh của tam giác. Khi đó O là giao điểm của:

A. Ba đường cao                        B. Ba đường trung trực 

C. Ba đường phân giác             D. Ba đường trung tuyến

Hết rồi ạ các bạn làm ơn giúp mình với ạ mình xin cảm ơn 

Các bạn làm được câu nào thì làm ko cần làm hết đâu ạ 

Bạn nào làm 1 câu mình cũng ad nhé 💋💋❤❤

 

 

6
13 tháng 8 2020

Câu 2:

Ta có: \(\hept{\begin{cases}f\left(0\right)=1\\f\left(1\right)=2\\f\left(2\right)=4\end{cases}}\Rightarrow\hept{\begin{cases}a.0^2+b.0+c=1\\a.1^2+b.1+c=2\\a.2^2+b.2+c=4\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c=1\\a+b+c=2\\4a+2b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=1\\4a+2b=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}2a+2b=2\\4a+2b=3\end{cases}}\Rightarrow\left(4a+2b\right)-\left(2a+2b\right)=3-2\)

\(\Leftrightarrow2a=1\Rightarrow a=\frac{1}{2}\)

\(\Rightarrow b=\frac{1}{2}\)

Vậy \(\left(a;b;c\right)=\left(\frac{1}{2};\frac{1}{2};1\right)\)

13 tháng 8 2020

3) Đáp án đúng: D

Vì \(6^2+8^2=36+64=100=10^2\)

(Định lý Pythagoras đảo)

=> Bộ số 6cm, 8cm, 10cm có thể là độ dài 3 cạnh của tam giác vuông

Câu 1:a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.Câu 3: Cho \(\Delta...
Đọc tiếp

Câu 1:

a) \(\Delta ABC\)có BD và CE là 2 đường trung tuyến và \(BD^2+CE^2=\frac{9}{4}BC^2\). C/m \(BD⊥CE\)tại G.

b)\(\Delta ABC\)có BC=a, AC=b, AB=c. Hai đường trung tuyến AM và BN vuông góc với nhau tại G. C/m\(a^2+b^2=5c^2\)

Câu 2: Cho \(\Delta ABC\)cân tại A có BC=a và cạnh bên bằng cạnh huyền của tam giác vuông cân có cạnh góc vuông bằng a. Tính độ dài đường trung tuyến BM của \(\Delta ABC\)theo a.

Câu 3: Cho \(\Delta ABC\), trung tuyến CD. Đường thẳng qua D và song song với BC cắt AC tại E. Đường thẳng qua D và song song với AC cắt BC tại F. Trên tia đối của tia BD lấy N sao cho BN=BD. Trên tia đối của tia CB lấy M sao cho CM=CF, gọi giao điểm của MD và AC là K. C/m N, F, K thẳng hàng.

Câu 4: Cho \(\Delta ABC\)có BC=2AB. Gọi M, I lần lượt là trung điểm của BC và BM. C/m AC=2AI và AM là tia phân giác của\(\widehat{CAI}\).

Câu 5: Cho \(\Delta ABC\),trung tuyến BM. Trên tia BM lấy 2 điểm G và K sao cho \(BG=\frac{2}{3}BM\) và G là trung điểm BK, gọi N là trung điểm KC , GN cắt CN tại O. C/m: \(GO=\frac{1}{3}BC\)  

(Bạn giải được câu nào thì giải, nhớ vẽ hình và ghi lời giải đầy đủ) 

0
các bạn giúp bài kiểm tra này nhé:Phần Trắc nghiệm (3đ)Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:A. 1 B. -1 C. 0 D. 2Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:A. 0,02 B. 0,02 và -0,02 C....
Đọc tiếp

các bạn giúp bài kiểm tra này nhé:

Phần Trắc nghiệm (3đ)

Câu 1. Cho hàm số y = f(x) = 2x2 + 3. Khi đó:

A. f(0) = 5 B. f(1) = 7 C. f(-1) = 1 D. f(-2) = 11

Câu 2. Giá trị của biểu thức: \(\frac{-5}{37}+\frac{-4}{13}+\frac{5}{37}+\frac{-9}{13}\) bằng:

A. 1 B. -1 C. 0 D. 2

Câu 3. Chọn câu trả lời đúng nhất: \(\sqrt{0,04}\) bằng:

A. 0,02 B. 0,02 và -0,02 C. 0,2 và -0,2 D. 0,2

Câu 4. Chọn câu trả lời đúng nhất:

Vẽ 4 đường thẳng a, b, c, d sao cho \(a \bot d; b \bot d; c \bot d.\) Ta có các đường thẳng song song với nhau là:

A. \(a \bot b\) B. \(a \bot c\) C. a // b // c D. Cả A, B, C đều sai

Câu 5. Trong tam giác ABC có:

A. \(A ̂+B ̂+C ̂=180° \) B. \(A ̂+B ̂+C ̂=90° \)

C. \(A ̂+B ̂+C ̂<180°\) D. \(A ̂+B ̂+C ̂>180°\)

Câu 6. Cho ΔABC = ΔDEF, biết \(B ̂=70°\); \(C ̂=50°\); EF = 3cm. Khi đó ta có:

A. \(D ̂=50°;BC=2cm\) B. \(D ̂=60°;BC=3cm\)

C. \(D ̂=70°;BC=3cm\) D. \(D ̂=80°;BC=5cm\)

Phần Tự luận (7đ)

Bài 1: (1đ) Tìm x, biết:

a) \(x:8,5=0,69:\left(-1,15\right)\) b) \(\left(\frac{2x}{3}-3\right):\left(-10\right)=\frac{2}{5}\)

Bài 2: (1,5đ)

a) Vẽ đồ thị của hàm số y= -3x

b) Điểm nào sau đây thuộc hay không thuộc đồ thị của hàm số trên?

E(2; -3) , F(-1; 3)

Bài 3. (1,5đ)

Tính độ dài các cạnh của một tam giác biết chu vi là 22 và các cạnh tam giác tỉ lệ với các số 2; 4; 5.

Bài 4. (3đ)

Cho ΔABC có AB = AC. M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho AM = MD.

a) Chứng minh AB = DC.

b) Chứng minh AB // DC.

c) Chứng minh CB là tia phân giác của GÓC ACD.

------------------------------HẾT ------------------------------

1

Câu 4: 

a: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB=DC
b: ta có: ABDC là hình bình hành

nên AB//DC

c: Xét hình bình hành ABDC có AB=AC

nên ABDC là hình thoi

=>CB là tia phân giác của góc ACD

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm