Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ghi nhầm:
a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông
b) Gọi K là trung điểm của AC. Chứng minh: KB=KD
c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân
4:
b: Xét tứ gác ABEC có
M là trung điểm của BC
M là trung điểm của AE
Do đó: ABEC là hình bình hành
Suy ra: AB//CD
a: Xét ΔABM và ΔACM có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔABM=ΔACM
a. Xét tgiac MAB va tgiac MDC co :
MD = MA ( gt )
BM = MC ( AM la dg trung tuyen)
^AMB = ^DMC ( 2 góc đối đỉnh)
=> tgiac MAB = tgiac MDC ( c.g.c) (dccm)
b. => AB = DC ( 2 canh tuong ung )
=> ^MBA = ^MCD ( 2 goc tuong ung )
- Ta co : 15^2 = 9^2 + 12^2
=> BC^2 = AB^2 + AC^2
=> tgiac ABC vuong tai A
Do BA vuog goc vs AC => DC vuog goc vs AC ( t/c quan he tu vuog goc den song song )
Ma ^MBA = ^MCD (CMT) => DC song song AB
Xet tgiac CKD va tgiac AKB co ;
AB = DC (CMT)
KC=KA (K la trung diem AC)
^BAK = ^DCK = 90o
=> tgiac CKD = tgiac AKB ( 2 cgv)
=> KD= KB ( 2 cah t.ung)
a) Xét tam giác MAB và tam giác MDC có:
MB=MA(gt) ; góc AMB = góc DMC (đối đỉnh) ;MB=MC (AM là trung tuyến ứng với BC)
-> Tam giác MAB = tam giác MDC (c.g.c)
-> góc CDM = góc BAM
-> CD song song với AB
-> góc DCA + góc BAC =180o (hai góc trong cùng phía)
góc DCA + 900 =180o
-> góc DCA = 90o
Vậy tam giác ACD vuông tại C
a: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
góc BAC=90 độ
=>ABDC là hình chữ nhật
=>ΔACD vuông tại C
b: Xet ΔKCD vuông tại C và ΔKAB vuông tại A có
KC=KA
CD=AB
=>ΔKCD=ΔKAB
=>KD=KB
c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.
Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC
Xét tam giác DMB và tam giác CMA
Có: CM=MB ( M trugn điểm)
DM=AM ( gt)
^DMB=^CMA (đđ)
Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^
B suy tiếp nhé!
Bạn tự vẽ hình nha!
Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)
\(225=81+AC^2\)
\(\Rightarrow AC^2=144\)
\(\Rightarrow AC=12\left(cm\right)\)
Xét tam giác MAB và tam giác MDC:
Có: DM=AM (gt)
CM=MB (AM trung tuyến)
Góc DMC=Góc AMB (đđ)
Vậy tam giác MAB= tam giác MDC (C.G.C)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Phạn - Toán lớp 7 - Học toán với OnlineMath
a) Chứng minh tam giác MAB bắng tam giác MDC. Suy ra tam giác ACD vuông.
b) Gọi k là trung điểm AC. Chứng minh KB=KD.
c) KD cắt BC tại I, KB cắt AD tại N. Chứng minh tam giác KNI cân.
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm