K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 7 2021

\(\dfrac{2n+1}{2n\left(n+1\right)}=\dfrac{2n+1}{2n^2+2n}\)

Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)

\(\Rightarrow2n^2+2n-n\left(2n+1\right)⋮d\)

\(\Rightarrow n⋮d\)

\(\Rightarrow2n+1-2.n⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản

27 tháng 11 2016

đây là bài thầy Tính chi

27 tháng 11 2016

đây là bài thầy Tính đúng ko

29 tháng 5 2017

Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)

Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)

\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)

\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)

\(\Rightarrow5n+1⋮d\)

\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)

\(\Rightarrow d=1\)

Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản

9 tháng 6 2017

Gọi d = (5n + 3 ; 3n + 2) (d thuộc N) 
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d 
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d 
=> 1 chia hết cho d 
=> d = 1 (vì d thuộc N) 
=> ƯCLN(5n + 3 ; 3n + 2) = 1 
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N

NV
6 tháng 8 2021

Đặt \(d=ƯC\left(2n+1;2n^2+2n\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)

\(\Rightarrow\left(2n+1\right)\left(2n+1\right)-2\left(2n^2+2n\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow2n+1\) và \(2n\left(n+1\right)\) nguyên tố cùng nhau hay phân số đã cho tối giản với mọi n nguyên

27 tháng 2 2016

Gọi (2n+1;2n(n+1))=d

=>2n+1 chia hết cho d;2n2+2n chia hết cho d

=>2n+1 chia hết cho d;2nn+n+n chia hết cho d

=>2n+1 chia hết cho d;n(2n+1)+n chia hết cho d

Mà n(2n+1) chia hết cho d

=>2n+1 chia hết cho d;n chia hết cho d

=>2n+1 chia hết cho d;2n chia hết cho d

=>(2n+1)-2n chia hết cho d

=>1 chia hết cho d

=>d=1

=>(2n+1;2n(n+1))=1

Vậy 2n+1/2n(n+1) là phân số tối giản (đpcm)

6 tháng 4 2015

trả lời thj` ns hẳn hoi đi, trả lời lih ta lih tih

6 tháng 4 2015

ne`, trả lời thj` trả lời cho nó hẳn hoi vào đấy nha, nên nhớ đây là toán.

27 tháng 5 2017

Giả sử phân số trên chưa tối giản

=> Tồn tại một số nguyên tố d để : \(5n+2⋮d\)\(\left(3n+1\right)\left(2n+1\right)⋮d\)

+) \(\left(3n+1\right)\left(2n+1\right)⋮d\)

Mà : d nguyên tố

=> \(3n+1⋮d\) hay \(2n+1⋮d\)

+) Nếu : \(3n+1⋮d\)

\(5\in N\Rightarrow5\left(3n+1\right)⋮d\Rightarrow15n+5⋮d\)

\(5n+2⋮d\) ; \(3\in N\Rightarrow3\left(5n+2\right)⋮d\Rightarrow15n+6⋮d\)

\(\Rightarrow\left(15n+6\right)-\left(15n+5\right)⋮d\)

\(\Rightarrow15n+6-15n-5⋮d\Rightarrow1⋮d\)

d là ước của 1 \(\Rightarrow d\in\left\{-1;1\right\}\) ( Vô lý vì d nguyên tố )

=> loại

+) Nếu \(2n+1⋮d\)

\(5\in N\Rightarrow5\left(2n+1\right)⋮d\Rightarrow10n+5⋮d\)

\(5n+2⋮d;2\in N\Rightarrow2\left(5n+2\right)⋮d\Rightarrow10n+4⋮d\)

\(\Rightarrow\left(10n+5\right)-\left(10n+4\right)⋮d\)

\(\Rightarrow10n+5-10n-4⋮d\Rightarrow1⋮d\)

d là ước của 1 \(\Rightarrow d\in\left\{-1;1\right\}\) ( Vô lý vì d nguyên tố )

=> loại => Giả sử sai

27 tháng 5 2017

Để cm phân số bất kì tối giản thì chúng ta hãy cm rằng tử và mẫu cua chúng có UCLN là \(\pm\)1 .

Gọi d là UC( 5n+2;(3n+1)(2n+1)).

\(5n+2⋮d\)\(\left(3n+1\right)\left(2n+1\right)⋮d\)

mà d là snt nên \(3n+1⋮d\) hoặc \(2n+1⋮d\)

\(\Leftrightarrow\)\(3\left(5n+2\right)⋮d\)\(5\left(3n+1\right)⋮d\)

\(\Leftrightarrow\)\(15n+6⋮d\)\(15n+5⋮d\)

\(\Leftrightarrow15n+6-\left(15n+5\right)⋮d\)

\(\Leftrightarrow d\in U\left(1\right)\)\(=\left\{\pm1\right\}\)

Vậy phân số đã cho tối giản.

Chúc bạn học tốt !!!

15 tháng 12 2017

\(\dfrac{2n+1}{2n\left(n+1\right)}=\dfrac{2n+1}{2n^2+2n}\)

Gọi \(d=ƯCLN\left(2n+1;2n^2+2n\right)\left(d\in N\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n+1⋮d\\2n^2+2n⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n^2+n⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow n⋮d\)

\(2n+1⋮d\)

\(\Leftrightarrow\left\{{}\begin{matrix}2n⋮d\\2n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d=1\)

\(\LeftrightarrowƯCLN\left(2n+1;2n\left(n+1\right)\right)=1\)

\(\Leftrightarrow\) Phân số \(\dfrac{2n+1}{2n\left(n+1\right)}\) là phân số tối giản