K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2021

`2/(3.5)+2/(5.7)+....+2/(2015.2017)`

`=1/3-1/5+1/5-1/7+....+1/2016-1/2017`

`=1/3-1/2017=2014/6051`

21 tháng 6 2021

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(=\dfrac{1}{3}-\dfrac{1}{2017}\)

\(=\dfrac{2017}{6051}-\dfrac{3}{6051}=\dfrac{2014}{6051}\)

16 tháng 5 2017

\(M=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(M=2.(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99})\)

\(M=2.\left(\dfrac{1}{3}-\dfrac{1}{99}\right)\)

\(M=2.\dfrac{32}{99}\)

\(M=\dfrac{64}{99}\)

10 tháng 4 2018

http://vietjack.com/giai-sach-bai-tap-toan-6/bai-95-trang-28-sach-bai-tap-toan-6-tap-2.jsp

5 tháng 4 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{39}\)

\(=(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13})+\dfrac{2}{39}\)

\(=(\dfrac{1}{3}-\dfrac{1}{13})+\dfrac{2}{39}\)

\(=\dfrac{10}{39}+\dfrac{2}{39}\)

\(=\dfrac{4}{13}\)

5 tháng 4 2017

gọi biểu thức đó là A

A=\(1.\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{13}\right)+\dfrac{2}{39}\)

A= \(\left(\dfrac{1}{3}-\dfrac{1}{13}\right)+\dfrac{2}{39}=\dfrac{4}{13}\)

mk nhanh nhất nha bạn

18 tháng 6 2018

Giải:

Biến đổi vế trái BĐT:

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{97}-\dfrac{1}{99}\)

\(=\dfrac{1}{3}-\dfrac{1}{99}\)

\(=\dfrac{32}{99}\)

\(\dfrac{32}{99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>\dfrac{32}{100}\)

\(\Leftrightarrow\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{97.99}>32\%\)

Vậy ...

18 tháng 6 2018

Thanks

11 tháng 4 2018

\(S=\dfrac{5-3}{5.3}+\dfrac{7-5}{7.5}....+\dfrac{25-23}{23.25}\)

\(S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{23}-\dfrac{1}{25}\)

\(S=\dfrac{1}{3}-\dfrac{1}{25}=\dfrac{25-3}{3.25}=\dfrac{7}{25}\)

11 tháng 4 2018

sửa lại nha bạn

\(\dfrac{25-3}{25.3}=\dfrac{22}{75}\)

24 tháng 6 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{13}-\dfrac{1}{15}\)

(do \(\dfrac{n}{a.\left(a+n\right)}=\dfrac{1}{a}-\dfrac{1}{a+n}\) với \(a\in N\)*)

\(=\dfrac{1}{3}-\dfrac{1}{15}=\dfrac{4}{15}\)

Chúc bạn học tốt!!!

24 tháng 6 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}+\dfrac{2}{11.13}+\dfrac{2}{13.15}\)

= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}\)

= \(\dfrac{1}{3}-\dfrac{1}{15}\)

= \(\dfrac{4}{15}\)

2 tháng 5 2017

\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)

\(A=\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+\dfrac{9-7}{7.9}+...+\dfrac{61-59}{59.61}\)

\(A=\dfrac{5}{3.5}-\dfrac{3}{3.5}+\dfrac{7}{5.7}-\dfrac{5}{5.7}+\dfrac{9}{7.9}-\dfrac{7}{7.9}+...+\dfrac{61}{59.61}-\dfrac{59}{59.61}\)

\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

\(A=\dfrac{1}{3}-\dfrac{1}{61}=\dfrac{61}{183}-\dfrac{3}{183}=\dfrac{58}{183}\)

2 tháng 5 2017

\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\)

= \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\)

= \(\dfrac{1}{3}-\dfrac{1}{61}\)

= \(\dfrac{58}{183}\)

20 tháng 4 2017

a, \(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{37.39}\)

\(=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{37}-\dfrac{1}{39}\)

\(=\dfrac{1}{3}-\dfrac{1}{39}\)

\(=\dfrac{12}{39}\)

Vậy \(A=\dfrac{12}{39}\)

b,\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{73.76}\)

\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{73}-\dfrac{1}{76}\)

\(=1-\dfrac{1}{76}\)

\(=\dfrac{75}{76}\)

Vậy \(B=\dfrac{75}{76}\)

20 tháng 4 2017

a) Ta có :

\(A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+....................+\dfrac{2}{37.39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...................+\dfrac{1}{37}-\dfrac{1}{39}\)

\(A=\dfrac{1}{3}-\dfrac{1}{39}=\dfrac{4}{13}\)

b) Ta có :

\(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+..................+\dfrac{3}{73.76}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+..................+\dfrac{1}{73}-\dfrac{1}{76}\)

\(B=1-\dfrac{1}{76}=\dfrac{75}{76}\)

~ Học tốt ~

3 tháng 4 2018

a)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+...+\dfrac{1}{24.25}\)

\(=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

\(=\dfrac{1}{5}-\dfrac{1}{25}\)

\(=\dfrac{4}{25}\)

b)

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{99.101}\)

\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{99}-\dfrac{1}{101}\)

\(=1-\dfrac{1}{101}\)

\(=\dfrac{100}{101}\)

3 tháng 4 2018

a) \(\dfrac{1}{5.6}=\dfrac{1}{5}-\dfrac{1}{6}\)

\(\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{24.25}=\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}=\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)b) \(\dfrac{2}{1.3}=1-\dfrac{1}{3}\)

tương tự

\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}\)

16 tháng 5 2017

\(S=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+...+\dfrac{7}{2015.2017}\)

\(\dfrac{2}{7}S=\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\)

\(\dfrac{2}{7}S=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(\dfrac{2}{7}S=\dfrac{1}{3}-\dfrac{1}{2017}\)

\(\dfrac{2}{7}S=\dfrac{2014}{6051}\)

\(S=\dfrac{4028}{42357}\)

16 tháng 5 2017

\(S=\dfrac{7}{3.5}+\dfrac{7}{5.7}+\dfrac{7}{7.9}+...+\dfrac{7}{2015.2107}\)

\(S=\dfrac{7}{2}\left(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{2015.2017}\right)\)

\(S=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}...+\dfrac{1}{2015}-\dfrac{1}{2017}\right)\)

\(S=\dfrac{7}{2}\left(\dfrac{1}{3}-\dfrac{1}{2017}\right)\)

\(S=\dfrac{7}{2}.\dfrac{2014}{6051}\)

\(S=\dfrac{4028}{42357}\)