Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề này mới đúng : CMR : 2+2017a2 chia hết cho 3
\(2+2017a^2=3+2017a^2+\left(a^2-1\right)⋮3\)
a) Vì p là số nguyên tố lớn hơn 3 nên p chia cho 3 dư 1 hoặc 2
+) \(p\equiv2\left(mod3\right)\)
\(\Rightarrow p+4\equiv6\left(mod3\right)\equiv0\left(mod3\right)\)
\(\Rightarrow p+4⋮3\)
Mà \(p+4>3\) nên \(p+4\) là hợp số (loại)
\(\Rightarrow p\equiv1\left(mod3\right)\)
\(\Rightarrow p+8\equiv9\left(mod3\right)\)
\(\Rightarrow p+8⋮3\)
Vì p + 8 > 3
\(\Rightarrow\)p + 8 là hợp số (đpcm)
b) (d + 2c + 4b) như thế mới đúng chứ nhỉ?!
Ta có: \(\overline{abcd}=1000a+100b+10c+d\)
\(=4b+2c+d+1000a+96b+8c\)
Mà \(1000a⋮8\); \(96b⋮8\)và \(8c⋮8\)
\(\Rightarrow4b+2c+d⋮8\)
\(\Rightarrow\overline{abcd}⋮8\) (đpcm)
Nếu bạn thấy mình làm khó hiểu câu a thì để mình làm cách khác
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 với k là số tự nhiên khác 0
Với p = 3k + 2
=> p + 4 = 3k + 6 chia hết cho 3
p + 4 > 3 => p + 4 là hợp số
=> p = 3k + 2 (loại)
=> p = 3k + 1
=> p + 8 = 3k + 9 chia hết cho 3
Mà p + 8 > 3 nên p + 8 là hợp số (đpcm)
đề bài có vấn đề ,
Thân Đồng
hôm qa e hỏi bài này nek