K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2017

Xét hàm số bậc nhất y = ax + b (a ≠ 0) trên tập số thực R

Với hai số  x 1  và  x 2  thuộc R và x 1  <  x 2 , ta có:

y 1  =  a 1  + b

y 2  =  a 2  + b

y 2  –  y 1  = (a x 2  + b) – (a x 1  + b) = a( x 2  –  x 1 )     (1)

*Trường hợp a > 0:

Ta có:  x 1  <  x 2  suy ra:  x 2  –  x 1  > 0     (2)

Từ (1) và (2) suy ra:  y 2  –  y 1  = a( x 2  –  x 1 ) > 0 ⇒  y 2  >  y 1

Vậy hàm số đồng biến khi a > 0

*Trường hợp a < 0:

Ta có:  x 1  <  x 2  suy ra:  x 2  –  x 1  > 0     (3)

Từ (1) và (3) suy ra:  y 2  –  y 1  = a( x 2  –  x 1 ) < 0 ⇒  y 2  <  y 1

Vậy hàm số nghịch biến khi a < 0

31 tháng 5 2017

Hàm số bậc nhất

Hàm số bậc nhất

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

 

24 tháng 10 2016

+) Với \(x< 0\)chọn \(x_1< x_2< 0\), ta có : 

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^4-x_2^4\right)+2\left(x_1^2-x_2^2\right)=\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)\)

Vì \(x_1< x_2< 0\) nên \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2< 0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)>0\)

\(\Rightarrow\hept{\begin{cases}x_1< x_2< 0\\f\left(x_1\right)>f\left(x_2\right)\end{cases}}\) => Hàm số nghịch biến.

+) Tương tự, với \(x\ge0\)ta chọn \(x_2>x_1\ge0\) thì ta có \(\hept{\begin{cases}x_1-x_2< 0\\x_1+x_2\ge0\end{cases}}\) và \(x_1^2+x_2^2+2>0\)

Suy ra \(\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2+2\right)< 0\)

\(\Rightarrow\hept{\begin{cases}x_2>x_1\ge0\\f\left(x_2\right)>f\left(x_1\right)\end{cases}}\) => Hàm số đồng biến.

1 tháng 6 2019

\(\left(m^2-4m+5\right)x^2\)

\(m^2-4m+5=m^2-2\cdot m\cdot2+2^2+1=\left(m-2\right)^2+1>0\)với mọi m

=> \(a>0\)

Do đóhàm số nghịch biến khi x<0 và đồng biến khi x>0

27 tháng 7 2018

P/s : làm đc rồi.

Mệnh đề sai : 

A: đồng biến khi a>0

tích mình đi

ai tích mình

mình tích lại

thanks

a: Khi x>0 thì y>0

=> Hàm số đồng biến

Khi x<0 thì y<0

=> Hàm số nghịch biến

b: Khi x>0 thì y<0

=> Hàm số nghịch biến

Khi x<0 thì y<0

=> Hàm số đồng biến

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

Lời giải:

a)

\(f(x)=g(x)\Leftrightarrow 7x=2+5x^2\)

\(\Leftrightarrow 5x^2+2-7x=0\)

\(\Leftrightarrow (5x^2-5x)-(2x-2)=0\)

\(\Leftrightarrow 5x(x-1)-2(x-1)=0\Leftrightarrow (5x-2)(x-1)=0\)

\(\Rightarrow \left[\begin{matrix} x=\frac{2}{5}\\ x=1\end{matrix}\right.\)

b)

Ta có: \(\left\{\begin{matrix} f(-x)=7(-x)=-7x\\ -f(x)=-7x\end{matrix}\right.\Rightarrow f(-x)=-f(x)\)

\(\left\{\begin{matrix} g(-x)=2+5(-x)^2=2+5x^2\\ g(x)=2+5x^2\end{matrix}\right.\Rightarrow g(-x)=g(x)\)

AH
Akai Haruma
Giáo viên
29 tháng 10 2018

c)

Xét \(x_1< x_2< 0\) đều thuộc TXĐ:

Khi đó:

\(g(x_1)-g(x_2)=2+5x_1^2-(2+5x_2^2)=5x_1^2-5x_2^2=5(x_1-x_2)(x_1+x_2)\)

\(x_1< x_2< 0\Rightarrow x_1-x_2< 0; x_1+x_2< 0\)

Do đó: \(g(x_1)-g(x_2)=5(x_1-x_2)(x_1+x_2)>0\Rightarrow g(x_1)> g(x_2)\)

Vậy hàm số nghịch biến khi $x< 0$

------------

Xét \(x_1> x_2>0\) thuộc TXĐ:

Khi đó:

\(g(x_1)-g(x_2)=(2+5x_1^2)-(2+5x_2^2)=5x_1^2-5x_2^2=5(x_1-x_2)(x_1+x_2)\)

\(x_1> x_2>0\Rightarrow x_1-x_2>0; x_1+x_2>0\)

\(\Rightarrow g(x_1)-g(x_2)>0\Rightarrow g(x_1)> g(x_2)\)

Vậy hàm số đồng biến khi $x>0$

26 tháng 12 2019

a) Hàm số đồng biến khi a > 0

b) Hàm số nghịch biến khi a < 0