Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:A=\(5^{n+2}+5^{n+1}+5^n\)
A=\(5^n\cdot5^2+5^n\cdot5^1+5^n\)
A=\(5^n\left(5^2+5+1\right)\)
A=\(5^n\cdot31⋮31\left(đpcm\right)\)
Ta có: \(A=5^{n+2}+5^{n+1}+5^n\)
\(\Rightarrow A=5^n.5^2+5^n.5+5^n\)
\(\Rightarrow A=5^n.\left(5^2+5+1\right)\)
\(\Rightarrow A=5^n.31⋮31\)
Vậy \(A⋮31\)
\(16^5-2^{15}=\left(2^4\right)^5-2^{15}=2^{20}-2^{15}=2^{15}\left(2^5-1\right)=31.2^{12}⋮31\)
ta có : \(16^5=\left(2^4\right)^5=2^{20}\)
=> \(2^{20}-2^{15}=2^{15}\left(2^5-1\right)\)
\(=2^{15}\left(32-1\right)\)
\(=2^{15}.31\) chia hết cho 31
(2^4)^5-2^15=2^20-2^15
=1015808:31
=32768
vậy 16^5-2^15 chia hết cho 31
dấu ^ là mũ nha bạn
\(16^5-2^{15}\)
\(=\left(2^4\right)^5-2^{15}\)
\(=2^{20}-2^{15}\)
\(=2^{15}\left(2^5-1\right)\)
\(=2^{15}\cdot31⋮31\left(đpcm\right)\)
Đề bài : Chứng minh rằng : 165 - 215\(⋮\) 31
Giải :
\(16^5-2^{15}\)
\(\Leftrightarrow\left(2^4\right)^5-2^{15}\)
\(=20^{4\cdot5}-2^{15}\)
\(=2^{20}-2^{15}\)
\(=2^{15}\cdot\left(2^5-1\right)\)
\(\Rightarrow2^{15}\cdot31⋮31\Leftrightarrow16^5-2^{15}⋮31\).
Chúc bạn học giỏi ! Okay !
a)Đặt \(E_n=n^3+3n^2+5n\)
- Với n=1 thì E1=9 chia hết 3
- Giả sử En đúng với \(n=k\ge1\) nghĩa là:
\(E_k=k^3+3k^2+5k\) chia hết 3 (giả thiết quy nạp)
- Ta phải chứng minh Ek+1 chia hết 3,tức là:
Ek+1=(k+1)3+3(k+1)2+5(k+1) chia hết 3
Thật vậy:
Ek+1=(k+1)3+3(k+1)2+5(k+1)
=k3+3k2+5k+3k2+9k+9=Ek+3(k2+3k+3)
Theo giả thiết quy nạp thì Ek chia hết 3
ngoài ra 3(k2+3k+3) chia hết 3 nên Ek chia hết 3
=>Ek chia hết 3 với mọi \(n\in N\)*
S=(5+5^2+5^3)+(5^4+5^5+5^6)+...+(5^28+5^29+5^30)
=>Có 30:3=10 nhóm
=>S=5(1+5+5^2)+...+5^28(1+5+5^2)
=>S=5.31+...+5^28.31
S=31(5+....+5^28) chia hết cho 31
nhớ bấm đúng cho mình bạn nhé
Ta có:
165 - 215 = (24)5 - 215
= 220 - 215
= 215 .( 25 - 1)
= 215 . 31
Vì 31 chia hết cho 31 nên 215 . 31 chia hết cho 31 hay 165 - 215 chia hết cho 31 (dpcm)
Ta có:
165 - 215
= (24)5 - 215
= 25 . 215 - 215
= 215(32 - 1) \(⋮\) 31(đpcm)