Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Xét hiệu: 6(x+7y) - 6x+11y = 6x+42y-6x+11y = 31y
Vì 6x+11y chia hết cho 31, 31y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 => x+7y chia hết cho 31
Bài 3:
a,n2+3n-13 chia hết cho n+3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 E Ư(13)={1;-1;13;-13}
=>n E {-2;-4;10;-16}
d,n2+3 chia hết cho n-1
=>n2-n+n-1+4 chia hết cho n-1
=>n(n-1)+(n-1)+4 chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 E Ư(4)={1;-1;2;-2;4;-4}
=>n E {2;0;3;-1;5;-3}
Bài 1
Vì 6x+11y chia hết cho 31
=> 6x+11y+31y chia hết cho 31 (31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=> 6(x+7y) chia hết cho 31
Mà (6;31)=1 nên x+7y chia hết cho 31 (đpcm)
Bài 3
n 2 + 3n - 13 chia hết cho n + 3
=>n(n+3)-13 chia hết cho n+3
=>13 chia hết cho n+3
=>n+3 thuộc Ư(13)={-1;1;-13;13}
=>n thuộc{-4;-2;-16;10}
n 2 + 3 chia hết cho n - 1
ta có: n-1 chia hết cho n-1
=>(n-1)(n+1) chia hết cho n-1
=>n^2+n-n-1 chia hết cho n-1
=>n^2-1 chia hết cho n-1 mà n2 + 3 chia hết cho n - 1
=>(n^2+3)-(n^2-1) chia hết cho n-1
=>4 chia hết cho n-1
=>n-1 thuộc Ư(4)={-1;1;-2;2;-4;4}
=> n thuộc {0;2;-1;3;-3
a)
Ta có : (6x+11y) chia hết cho 31
=> 6x+11y+31y chia hết cho 31 ( Vì 31 chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x+7y) chia hết cho 31
=> x+7y chia hết cho 31
b)
3a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮53a+5b=8c⇔3(a−c)=5(c−b)(∗)⇒3(a−c)⋮5, mà (3,5)=1(3,5)=1 nên a−c⋮5a−c⋮5
Vì −8≤a−c≤9−8≤a−c≤9 nên a−c∈−5;0;5a−c∈−5;0;5
Với a−c=−5(1)a−c=−5(1), Thế vào (*), được: b−c=3(2)b−c=3(2). Từ (1), (2) suy ra: a−b=−8a−b=−8 hay b=a+8⇒a=1,b=9,c=6b=a+8⇒a=1,b=9,c=6. Ta được số 196.
Với a−c=0a−c=0 hay a=ca=c loại vì 3 chữ số khác nhau.
Với a−c=5a−c=5 lập luận tương tự, ta được:
b=0;a=8;c=3b=0;a=8;c=3. Ta được số 803.
b=1;a=9;c=4b=1;a=9;c=4. Ta được số 914.
Vậy có tất cả 3 số thỏa mãn đề bài.
a) Ta có:
\(8^5+2^{11}=34816\)
Phân tích ra thừa số nguyên tố số bằng: \(34816=2^{11}.17\)mà \(17⋮17\Leftrightarrow2^{11}.17⋮17\)
\(\Leftrightarrow34816⋮17\Leftrightarrow\left(8^5+2^{11}\right)⋮17\)
b) \(8^7-2^{18}=1835008\)
Phân tích ra thừa số nguyên tố số bằng: \(1835008=2^{18}.7=2^{17}.14\)mà \(14⋮14\Leftrightarrow2^{17}.14⋮14\Leftrightarrow2^{18}.7⋮14\)
\(\Leftrightarrow1835008⋮14\Leftrightarrow\left(8^7-2^{18}\right)⋮14\)
Lời giải : a/ Vì 85= (23)5 = 215 nên Ta có: 85+211 = 215+211 = 211.(24+1) = 211.17 chia hết cho 17
b/ Vì 87 = (23)7 = 221 nên 87- 218 = 221 – 218 = 218(23 – 1) = 218.7 = 217.14 chia hết cho 14
c/ Vì (9x + 13y) chia hết cho 19 nên 2.(9x + 13y) chia hết cho 19.
Tức là (18x + 26y) chia hết cho 19 . Ta có 18x + 26y = 19x – x + 19y + 7y = 19(x+y) +(7y – x)
chia hết cho 19, mà 19(x+y) chia hết cho 19 nên (7y – x) chia hết cho 19
Chúc Mạnh Châu học tập ngày càng giỏi nhé. Học thật tốt lý thuyết, nhớ công thức và vận dụng công thức linh hoạt.
Các bạn ơi, đính chính lại nhé! Chỉ cần giải bài 1, 2a,2d và bài 3 là được rồi nhé, mình cảm ơn
1. Xét 32^9 và 18^13
ta có 32^9=(2^5)^9=2^45
18^13>16^13=(2^4)^13=2^52
vì 18^13>2^52>2^45 nên 18^13>32^9
2.
a, ta có A=10\(^{2008}\)+125=100...0+125(CÓ 2008 SỐ 0)=100..0125(CÓ 2005 CSO 0)
Vì 45=5.9 nên cần chứng minh A \(⋮5,⋮9\)
mà A có tcung là 5 nên A \(⋮\)5
A có tổng các cso là 9 nên A\(⋮\)9
vậy A \(⋮\)45
d, bn xem có sai đề ko nhé
3, A=(y+x+1)/x=(x+z+2)/y=(x+y-3)/z=1/(x+y+z)=(y+x+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)=1/(x+y+z)( AD tchat của dãy tỉ số = nhau)
x+y+z=1/2 hoặc -1/2
còn lai bn tự tính nhé
Bài 1:
\(A=-\left|x-\dfrac{7}{2}\right|+\dfrac{1}{2}\le\dfrac{1}{2}\forall x\)
Dấu '=' xảy ra khi x=7/2
Bài 2:
a: \(A=2^{21}-2^{18}=2^{18}\cdot\left(2^3-1\right)=2^{17}\cdot14⋮14\)
b: \(B=2^6\cdot5^6-5^6\cdot5=5^6\cdot59⋮59\)
c: \(C=5^n\cdot25+5^n\cdot5+5^n=5^n\cdot31⋮31\)
Tui biet nhung ko tra loi dc