Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức (5.1 và 5.2 - SGK) ta tìm được:
A = 2,3 cm và φ = 0,73π
Phương trình dao động tổng hợp là: x = 2,3cos(5πt + 0,73π) (cm).
Áp dụng công thức: \(A^2 = x^2 +\frac{v^2}{\omega^2} \) \(\Rightarrow A^2 = 3^2 +\frac{(60\sqrt3)^2}{\omega^2} = (3\sqrt2)^2 +\frac{(60\sqrt2)^2}{\omega^2} \)
Giải hệ trên ta được \(\omega = 20rad/s; \ A =6cm\)
Áp dụng công thức độc lập, ta có: \(A^2 = x^2+\frac{v^2}{\omega^2} \Rightarrow\) \(8^2+\frac{12^2}{\omega^2} = 6^2+\frac{16^2}{\omega^2} \Rightarrow \omega = 2 \ (rad/s) \Rightarrow f = \frac{1}{\pi} \ Hz\)
Áp dụng định lý hàm sin ta có:
\(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\) = \(\dfrac{Á_2}{sina}\) = \(\dfrac{A_3}{sinb}\)
⇒ A2 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\)sina
Để A2 đạt giá trị lớn nhất, góc a bằng 90o, suy ra góc b bằng 60o
nên A1 = \(\dfrac{5\sqrt{3}}{\dfrac{sin\pi}{3}}\).sin60 = \(\dfrac{7,5}{\dfrac{sin\pi}{3}}\)
+ Phương pháp giản đồ vecto
+ Từ hình vẽ, ta thấy rằng A2 ≤ OH.
Áp dụng hệ thức lượng trong tam giác, ta thu được
Đáp án A