K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình xin phép sửa đề:

Cho tam giac ABC cân tại A, M là trung điểm của BC, ME vuông góc với AB, MF vuông góc với AC. Chứng minh ME = MF và AM là đường trung trực của EF.

\(\text {(1)}\)

Xét Tam giác `ABM` và Tam giác `ACM` có:

`AB = AC (\text {Tam giác ABC cân tại A})`

\(\widehat {B}= \widehat {C}(\text {Tam giác ABC cân tại A})\)

`MB = MC (\text {M là trung điểm của BC})`

`=> \text {Tam giác ABM = Tam giác ACM (c-g-c)}`

`->`\(\widehat {BAM}=\widehat {CAM} (\text {2 góc tương ứng})\)

Xét Tam giác `AEM` và Tam giác `AFM` có:

`\text {AM chung}`

\(\widehat{BAM}=\widehat{CAM} (CMT)\)

\(\widehat{AEM}=\widehat{AFM} (=90^0)\)

`=> \text {Tam giác AEM = Tam giác AFM (ch-gn)}`

`-> ME = MF (2 cạnh tương ứng)`

\(\left(2\right)\) 

Gọi `I` là giao điểm của `AM` và `EF`

C1:

Vì Tam giác `AEM =` Tam giác `AFM (\text {Theo CMT})`

`-> AE = AF (\text {2 cạnh tương ứng})`

Xét Tam giác `AEI` và Tam giác `AFI` có:

`AE = AF (CMT)`

\(\widehat{EAI}=\widehat{FAI} (\text {Theo CMT})\)

`\text {AI chung}`

`=> \text {Tam giác AEI = Tam giác AFI (c-g-c)}`

`-> IE = IF (\text {2 cạnh tương ứng})`

`->`\(\widehat{AIE}=\widehat{AIF} (\text {2 góc tương ứng})\)

Mà `2` góc này nằm ở vị trí kề bù

`->`\(\widehat{AIE}+\widehat{AIF}=180^0\)

`->`\(\widehat{AIE}=\widehat{AIF}=\)`180/2=90^0`

`-> \text {AI} \bot \text {EF}`

\(\text{Ta có: }\left\{{}\begin{matrix}\text{IE = IF }\\\text{AI}\perp\text{EF}\end{matrix}\right.\)

`-> \text {AI là đường trung trực của EF}`

`-> \text {AM là đường trung trực của EF}`

C2 (nếu bạn đã học về tính chất của tam giác cân với các đường Trung Tuyến, Đường Cao, Đường Trung Trực) :

Ta có: 

AM vừa là đường phân giác, vừa là đường trung tuyến

`*` Theo tính chất của tam giác cân

`-> \text {AM là đường trung trực của EF (đpcm)}`

`@`\(\text{dnammv}\)

loading...

13 tháng 2 2018

cứ tra mạng là có ngay ak

t nghĩ chắc là cs đây !!

28 tháng 3 2019

a, xét \(\Delta\)BEM và \(\Delta\)CFM có:

           \(\widehat{B}\)=\(\widehat{C}\)(gt)

           BM=CM(trung tuyến AM)

\(\Rightarrow\)\(\Delta\)BEM=\(\Delta\)CFM(CH-GN)

b,Ta có \(\Delta\)ABM=\(\Delta\)ACM(c.c.c)

\(\Rightarrow\)\(\widehat{BAM}\)=\(\widehat{CAM}\)

Gọi O là giao của AM và EF

xét tam giác OAE và tam giác OAF có:

              AO cạnh chung

             \(\widehat{OAE}\)=\(\widehat{OAF}\)(cmt)

     vì AB=AC mà EB=FC nên AE=AF

\(\Rightarrow\)tam giác OAE=tam giác OAF(c.g.c)

\(\Rightarrow\)\(\widehat{AOE}\)=\(\widehat{AOF}\)mà 2 góc này ở vị trí kề bù nên\(\widehat{AOE}\)=\(\widehat{AOF}\)=90 độ(1)

\(\Rightarrow\)OE=OF suy ra O là trung điểm EF(2)

từ (1) và (2) suy ra AM là đg trung trực của EF

c, vì \(\widehat{BAM}\)=\(\widehat{CAM}\)=> AM là p/g của \(\widehat{BAC}\)(1)

ta có tam giác BAM=tam giác CAM(c.g.c)

=> AD là p/g của góc BAC(2)

từ (1) và(2) suy ra AM và AD trùng nhau nên A,M,D thẳng hàng

                

28 tháng 3 2019

a, Ta có : Tam giác ABC cân tại A => Góc B=Góc C

Xét tam giác BEM vuông tại E và tam giác CFM vuông tại F

BM=CM (BM là trung tuyến)

Góc B=Góc C

=> Tam giác BEM=Tam giác CFM(ch-gn)

b,Từ a, \(\Delta\)BEM=\(\Delta CFM\)=> ME=MF (1);BE=FC

Mà AB=AC=> AE=AF(2)

Từ 1 và 2 => AM là trung trực của EF

13 tháng 5 2016

a/ Xét tam giác BEM và tam giác CFM có:

Góc B=C(Tam giác ABC cân tại A)

Góc BEM=CFM(Tam giác ABC cân tại A)

BM=MC(Trung tuyến AM)

=> Tam giác BEM=tam giác CFM(ch-gn)

b/Gọi giao điểm của EF và AM là O.

Vì AM là trung tuyến của tam giác cân nên AM cũng là đường cao của tam giác cân ABC.

=> Góc AMB=AMC=90 độ.

Mà Góc EMB=FMC(góc tương ứng của tam giác EMB=tam giác FMC)

=> Góc EMO=FMO.

Xét tam giác EMO và tam giác FMO có:

EM=MF(cạnh tương ứng trong tam giác EMB= tam giác FMC)

Góc EMO=FMO(cmt)

MO chung

=> Tam giác EMO=tam giác FMO(c-g-c)

=> Góc EOM=FOM(góc tương ứng)=180 độ/2=90 độ 

     EO=OF(cạnh tương ứng)

=> AM là đường trung trực của EF.

c/ Vì AI=\(\frac{8}{3}\)cm nên AM có độ dài là: \(\frac{8}{3}:\frac{2}{3}=4\)cm(tính chất trọng tâm tam giác)

Áp dụng định lí Pytago vào tam giác vuông AMC, ta được:

AC2=AM2+MC2=42+MC2=52=25

=> MC=\(\sqrt{\left(5^2-4^2\right)}=3\)cm

Mà BM=MC(Trung tuyến AM)

=> BC=3+3=6cm

13 tháng 5 2016

A B C M E F

9 tháng 6 2018

A B C M E F

a/ Ta có :

\(\Delta ABC\) cân tại A

Lại có : AM là đường trung tuyến ứng với BC

\(\Leftrightarrow AM\) là đường trung trực của BC (đpcm)

b/ \(\Delta BEM=\Delta CFM\left(ch-gn\right)\)

\(\Leftrightarrow ME=MF\) (đpcm)

Ta có : +) \(AB=AE+EB\) (E nằm ~ A và B)

\(AC=AF+FC\) (F nằm giữa A và C)

Mà AB = AC; EB = EC do \(\Delta BEM=\Delta CFM\)

\(\Leftrightarrow AE=À\)F

Lại có : ME = MF

\(\Leftrightarrow AM\) là đường trung trực của EF

9 tháng 6 2018

a) \(\Delta ABC\) cân tại A mà AM là trung tuyến của BC

=> AM là trung trực của BC ( tính chất tam giác cân )

b) \(\Delta ABC\) cân tại A mà AM là trung trực của BC

=> AM là phân giác của góc A

Xét tam giác EAM và tam giác FAM

\(\widehat{AEM}=\widehat{ÀFM}=90^0\)

AM chung

\(\widehat{FAM}=\widehat{EAM}\) (AM là phân giác của góc A)

=> \(\Delta\) vuông EAM =\(\Delta\) vuông FAM ( cạnh huyền -góc nhọn )

=> AE =AF ( 2 cạnh tương ứng )

=> \(\Delta AEF\) cân tại A mà AM là phân giác của góc A

=> AM là trung trực của EF ( tính chất tam giác cân )

a: Xét ΔEBM vuông tại E và ΔFCM vuông tại F có

MB=MC

góc B=góc C

=>ΔEBM=ΔFCM

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

ME=MF

=>ΔAEM=ΔAFM

=>AE=AF

mà ME=MF

nên AM là trung trực của EF
c: Xét ΔABC có AE/AB=AF/AC

nên EF//BC

d: Xet ΔABD vuông tại B và ΔACD vuông tại C có

AD chung

AB=AC

=>ΔABD=ΔACD
=>BD=CD
=>D nằm trên trung trực của BC

=>A,M,D thẳng hàng