Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}mx+y=m^2+m+1\\-x+my=m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(my-m^2\right)+y-m^2-m-1=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}\left(m^2y-m^2\right)+\left(y-1\right)-\left(m^3+m\right)=0\\x=my-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m^2+1\right)\left(y-m-1\right)=0\\x=my-m^2\end{cases}}\)
\(\Leftrightarrow\)\(\hept{\begin{cases}y=m+1\\x=m\left(m+1\right)-m^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m\\y=m+1\end{cases}}\)
\(\Rightarrow\)\(x^2+y^2=2m^2+2m+1=2\left(m+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(m=\frac{-1}{2}\) hay hệ có nghiệm \(\left(x;y\right)=\left(\frac{-1}{2};\frac{1}{2}\right)\)
\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)
rút x từ (1) thế vào (2)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)
\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)
\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)
\(\Leftrightarrow Ay=B\)
Taco
\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)
\(\Rightarrow y>0\forall m\in R\)
Kết luận không có m thủa mãn
Ta có: D = m m + 2 1 m = m 2 − m − 2
D x = 5 m + 2 2 m + 3 m = 5 m − ( m + 2 ) ( 2 m + 3 ) = − 2 m 2 − 2 m − 6
D y = m 5 1 2 m + 3 = 2 m 2 + 3 m − 5
Để hệ phương trình có nghiệm duy nhất thì D ≠ 0 ⇔ m 2 − m − 2 ≠ 0 ⇔ m ≠ − 1 m ≠ 2
Khi đó: x = D x D = − 2 ( m 2 + m + 3 ) m 2 − m − 2 ; y = D y D = 2 m 2 + 3 m − 5 m 2 − m − 2
Để hệ phương trình có nghiệm âm thì: − 2 ( m 2 + m + 3 ) m 2 − m − 2 < 0 ( 1 ) 2 m 2 + 3 m − 5 m 2 − m − 2 < 0 ( 2 )
1 ⇔ m 2 + m + 3 m 2 − m − 2 > 0 ⇔ m 2 − m − 2 > 0 ( v ì m 2 + m + 3 = m + 1 2 2 + 11 4 > 0 , ∀ m )
⇔ m < − 1 m > 2 *
2 ⇔ 2 m 2 + 3 m − 5 > 0 m 2 − m − 2 < 0 2 m 2 + 3 m − 5 < 0 m 2 − m − 2 > 0 ⇔ m < − 5 2 m > 1 − 1 < m < 2 − 5 2 < m < 1 m < − 1 m > 2 ⇔ 1 < m < 2 − 5 2 < m < − 1 * *
Từ (*) và (**) suy ra − 5 2 < m < − 1
Đáp án cần chọn là: D