Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:\(\widehat{aOb}\) = 180
\(\Rightarrow\)3 x \(\widehat{aOc}\)=180
\(\Rightarrow\)\(\widehat{aOc}\)=180 : 3 = 60
\(\Rightarrow\)\(\widehat{aOc}\)=\(\widehat{bOd}\)= 60 (2 góc đối đỉnh)
ta có: \(\widehat{aOc}\)+\(\widehat{cOb}\)= 180 (2 góc kề bù)
\(\Rightarrow\)60 + \(\widehat{cOb}\)= 180
\(\Rightarrow\)\(\widehat{cOb}\)= 180 - 60 = 120
\(\Rightarrow\)\(\widehat{aOd}\)=\(cOb\)= 120 (2 goc đối đỉnh)
Vậy \(\widehat{aOc}\)= 60;\(\widehat{cOb}\)= 120;\(\widehat{bOd}\)= 60;\(\widehat{aOd}\)=120
Bn tự vẽ hình nha!
Gọi O là giao điểm của AB và CD
Ta có Ô1 + Ô2 + Ô3 + Ô4 = 360 độ
⇒ Ô4 = 360 độ - (Ô1 + Ô2 + Ô3) = 360 độ - 250 độ = 110 độ
Vì Ô2 = Ô4 (đối đỉnh) nên Ô2 = 110 độ
Ta có Ô1 + Ô2 = 180 độ (kề bù)
⇒ Ô1 = 180 độ - Ô2 = 180 độ - 110 độ = 70 độ
Vì Ô1 = Ô3 (đối đỉnh) nên Ô3 = 70 độ
Có: \(\begin{cases}\widehat{AOD}-\widehat{BOD}=30\\\widehat{AOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\30+\widehat{BOD}+\widehat{BOD}=180\end{cases}\)\(\Leftrightarrow\begin{cases}\widehat{AOD}=30+\widehat{BOD}\\2\widehat{BOD}=150\end{cases}\)
\(\Leftrightarrow\begin{cases}\widehat{AOD}=105\\\widehat{BOD}=75\end{cases}\)
Lại có: \(\widehat{AOC}=\widehat{BOD}=75;\widehat{BOC}=\widehat{AOD}=105\) ( cặp góc đối đỉnh)
Ta có tổng của 3 trong 4 góc đó=300
=>Có số cặp góc 3 là:4 cặp
Vậy có số góc là:3.4=12(góc).
=>4 cặp góc là:300.4=1200(độ).
TB mỗi góc là :
1200:12=100 (độ).
Nhưng vì:COE<COF =>COF>ECD.
=>EOC>DOF.
Nên (EOC+COF)>(ECD+DOF)