Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với m = -3 (d) có dạng: y=-3m+2
Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=-3x+2\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Với x=1 ta có y= -3.1+2 = -1
Với x=2 ta có y = -3.2+2= -4
Vậy tọa độ giao điểm của (P) và (d) là (1;-1); (2;-4)
Bạn tự vẽ hình minh họa kết quả nhé
b, Vì (d') song song với đường thẳng y=-2x+2 nên (d') có dạng:
y = -2x+b
Pt hoành độ giao điểm của (P) và (d) là: \(-x^2=-2x+b\)
\(\Leftrightarrow x^2-2x+b=0\) (1)
Để (d') tiếp xúc với (P) thì pt (1) có nghiệm kép
\(\Leftrightarrow\Delta'=1^2-b=1-b=0\)
\(\Leftrightarrow b=1\)
Với b=1 thay vào (1) ta được: \(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)
Với x=1 ta có y= -1
Vậy tọa độ tiếp điểm của (P) và (d') là (1;-1)
c, Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\) (2)
Xét pt (2) có \(\Delta=m^2-4.2=m^2-8\)
Để (P) và (d) cắt nhau tại 2 điểm A; B thì pt (2) có 2 nghiệm\(\Leftrightarrow\Delta=m^2-8\ge0\)
\(\Leftrightarrow m^2\ge8\) (*)
Vì \(x_1;x_2\) là hoành độ các giao điểm của (d) và (P) nên \(x_1;x_2\) là 2 nghiệm của pt (2).
Theo định lí Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2\end{matrix}\right.\)
Theo ycbt: \(x_1^2+x_2^2=1-4\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1-4\left(x_1+x_2\right)\)
\(\Rightarrow m^2-4=1+4m\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)
Ta thấy m=5 TMĐK (*) còn m= -1 thì không
Vậy m=5 là giá trị cần tìm
Giải hệ trước nhaaa :D
\(ĐK:\left\{{}\begin{matrix}2x-3y+3\ge0\\3x-2y-3>0\end{matrix}\right.\)
Hệ pt \(\Leftrightarrow\left\{{}\begin{matrix}6\sqrt{2x-3y+3}+\frac{9}{\sqrt{3x-2y-3}}=27\left(1\right)\\\sqrt{2x-3y+3}-\frac{9}{3x-2y-3}=1\left(2\right)\end{matrix}\right.\)
(1)+(2)<=> \(7\sqrt{2x-3y+3}=28\)
\(\Rightarrow\sqrt{2x-3y+3}=4\)(3)
\(\Rightarrow2x-3y=13\)
Thay (3) vào (2) ta được 3x-2y=6
Ta có hệ \(\left\{{}\begin{matrix}2x-3y=13\\3x-2y=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-8}{5}\\y=\frac{-27}{5}\end{matrix}\right.\)
Vậy............
Để d đi qua A
\(\Leftrightarrow m.1+n=0\Rightarrow n=-m\Rightarrow y=mx-m\)
Phương trình hoành độ giao điểm (P) và d:
\(\frac{1}{2}x^2=mx-m\Leftrightarrow x^2-2mx+2m=0\) (1)
Để d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=m^2-2m=0\Rightarrow\left[{}\begin{matrix}m=0\Rightarrow n=0\\m=2\Rightarrow n=-2\end{matrix}\right.\)
- Với \(m=n=0\Rightarrow x^2=0\Rightarrow x=0\Rightarrow y=0\)
Tọa độ tiếp điểm là \(\left(0;0\right)\)
- Với \(\left[{}\begin{matrix}m=2\\n=-2\end{matrix}\right.\) \(\Rightarrow x^2-4x+4=0\Rightarrow x=2\Rightarrow y=2\)
Tọa độ tiếp điểm là \(\left(2;2\right)\)
PTTT: 2x+y+d=0 ( d khác -1) (d1)
do là tiếp tuyến nên
d(I,(d1)) =R => d
xét pt hoành độ giao điểm của d1 và (C) => tọa độ tiếp điểm
hoặc có thể làm theo C2
gọi H là tiếp điểm => H thuộc d1 => tọa độ tham số của H
tính vecto IH
có vt IH. vtcp d1 = 0 => HPTTT: 2x+y+d=0 ( d khác -1) (d1)
do là tiếp tuyến nên
d(I,(d1)) =R => d
xét pt hoành độ giao điểm của d1 và (C) => tọa độ tiếp điểm
hoặc có thể làm theo C2
gọi H là tiếp điểm => H thuộc d1 => tọa độ tham số của H
tính vecto IH
có vt IH. vtcp d1 = 0 => H