K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

a, Với m = -3 (d) có dạng: y=-3m+2
Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=-3x+2\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Với x=1 ta có y= -3.1+2 = -1
Với x=2 ta có y = -3.2+2= -4
Vậy tọa độ giao điểm của (P) và (d) là (1;-1); (2;-4)
Bạn tự vẽ hình minh họa kết quả nhé
b, Vì (d') song song với đường thẳng y=-2x+2 nên (d') có dạng:
y = -2x+b
Pt hoành độ giao điểm của (P) và (d) là: \(-x^2=-2x+b\)
\(\Leftrightarrow x^2-2x+b=0\) (1)
Để (d') tiếp xúc với (P) thì pt (1) có nghiệm kép
\(\Leftrightarrow\Delta'=1^2-b=1-b=0\)
\(\Leftrightarrow b=1\)
Với b=1 thay vào (1) ta được: \(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)
Với x=1 ta có y= -1
Vậy tọa độ tiếp điểm của (P) và (d') là (1;-1)
c, Pt hoành độ giao điểm của (P) và (d) là
\(-x^2=mx+2\)
\(\Leftrightarrow x^2+mx+2=0\) (2)
Xét pt (2) có \(\Delta=m^2-4.2=m^2-8\)
Để (P) và (d) cắt nhau tại 2 điểm A; B thì pt (2) có 2 nghiệm\(\Leftrightarrow\Delta=m^2-8\ge0\)
\(\Leftrightarrow m^2\ge8\) (*)
\(x_1;x_2\) là hoành độ các giao điểm của (d) và (P) nên \(x_1;x_2\) là 2 nghiệm của pt (2).
Theo định lí Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=2\end{matrix}\right.\)
Theo ycbt: \(x_1^2+x_2^2=1-4\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1-4\left(x_1+x_2\right)\)
\(\Rightarrow m^2-4=1+4m\)
\(\Leftrightarrow m^2-4m-5=0\)
\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1\\m=5\end{matrix}\right.\)
Ta thấy m=5 TMĐK (*) còn m= -1 thì không
Vậy m=5 là giá trị cần tìm

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)