K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

Áp dụng t/c dãy tỉ số bằng nhau,ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

=> a=b=c

2 tháng 10 2016

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)

\(\Rightarrow a=b=c\)

Vậy :       \(a=b=c\)

11 tháng 10 2017

Ta có : \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

=> \(\frac{a}{c}=\frac{b}{d}\)

=> \(\frac{a}{b}=\frac{c}{d}\) nếu khố hiểu thì bạn chứng mình kiểu này : 
Ta có : \(\frac{a}{b}=\frac{c}{d}\)

=> \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) 

Mặt khác \(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

Vậy \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

31 tháng 10 2017

Bài 1:

Áp dụng t.c của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)

1 tháng 11 2017

Thanks nha!!!

12 tháng 3 2020

\(\left(a-b\right)^2\ge0< =>a^2+b^2\ge2ab\\ \left(b-c\right)^2\ge0< =>b^2+c^2\ge2bc\\ \left(c-a\right)^2\ge0< =>a^2+c^2\ge2ac\) ;

Cộng các vế tương ứng của 3 bất pt trên ta đc:

\(a^2+b^2+c^2\ge ab+bc+ac\)

<=> \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\)

<=>\(0\ge3\left(ab+bc+ac\right)\)

=> ĐPCM

Dấu = xảy ra a=b=c=0

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 1:

$\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt; c=dt$. Khi đó:

\(\frac{2a^2-3ab+5b^2}{2a^2+3ab}=\frac{2(bt)^2-3.bt.b+5b^2}{2(bt)^2+3bt.b}=\frac{b^2(2t^2-3t+5)}{b^2(2t^2+3t)}\)

$=\frac{2t^2-3t+5}{2t^2+3t}(1)$
\(\frac{2c^2-3cd+5d^2}{2c^2+3cd}=\frac{2(dt)^2-3.dt.d+5d^2}{2(dt)^2+3dt.d}=\frac{d^2(2t^2-3t+5)}{d^2(2t^2+3t)}=\frac{2t^2-3t+5}{2t^2+3t}(2)\)

Từ $(1);(2)$ suy ra đpcm.

AH
Akai Haruma
Giáo viên
7 tháng 2 2020

Bài 2:

Từ $\frac{a}{c}=\frac{c}{b}\Rightarrow c^2=ab$. Khi đó:

$\frac{b^2-c^2}{a^2+c^2}=\frac{b^2-ab}{a^2+ab}=\frac{b(b-a)}{a(a+b)}$ (đpcm)

30 tháng 9 2017

Bài 1

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(1\right)\)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\left(đpcm\right)\)

Vậy .....

Bài 2

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Leftrightarrow\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)

\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)

Vậy .....

Chúc bạn học tốt!

a)  \(\frac{a}{a+b}=\frac{c}{c+d}\)=> a . ( c + d )  = c . ( a + b )

=> ac + ad = ac + cb

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\)

29 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau=>a/b=b/c=c/d=a+b+c/b+c+d

Có:(a/b)^3=a/b.b/c.c/d=a/d

mà a/b=a+b+c/b+c+d=>(a/b)^3=(a+b+c/b+c+d)^3

=>a/d=(a+b+c/b+c+d) =>ĐPCM

29 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau: a/b = b/c = c/d = (a + b + c)/(b + c + d) => (a/b)^3 = (a+b+c/b+c+d)^3 
Vậy (a+b+c/b+c+d)^3 = (a/b)^3 = (a/b).(a/b).a/b) = (a/b).(b/c).(c/d) = a/d (do rút gọn).