Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 cách khác
M = 299 + 2 . 298 + 3 . 297 + 4 . 296 + ... + 98 . 22 + 99 . 2 + 100 . 20
M = 299 + 2 . ( 299 - 298 ) + 3 . ( 298 - 297 ) + 4 . ( 297 - 296 ) + ... + 99 . ( 22 - 2 ) + 100 . ( 2 - 1 )
M = 299 + 2100 - 2 . 298 + 3 . 298 - 3 . 297 + 4 . 297 - 4. 296 + ... + 99 . 22 - 99 . 2 + 100 . 2 - 100
M = 2100 + 299 +298 + 297 + 296 + ... + 2 - 100
M = 2101 - 102
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
a, A = 1 + 2 + 22 + ... + 299
= (1 + 2) + (22 + 23) + ... + (298 + 299)
= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)
= 1 . 3 + 22 . 3 + ... + 298 . 3
Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3
hay A chia hết cho 3 (đpcm)
b, A = 1 + 2 + 22 + ... + 299
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)
= 1 . 15 + 24 . 15 + ... + 296 . 15
Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15
hay A chia hết cho 15 (đpcm)
Tiếp bài của @trankhanhvy2008
A = 1 + 2 + 22 + 23 + 24 + ... + 299
2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )
= 2 + 22 + 23 + 24 + ... + 2100
2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )
=> A = 2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299
= 2100 - 1
2100 - 1 < 2100
=> A < 2100