Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+6+6^2+...+6^{100}\)
\(6A=6+6^2+6^3+...+6^{101}\)
\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
Hoàn toàn tương tự với các câu b) c)
\(A=1+6+6^2+6^3+...+6^{100}\)
\(6A=6+6^2+6^3+6^4+...+6^{101}\)
\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)
\(5A=6^{101}-1\)
\(A=\frac{6^{101}-1}{5}\)
A=1.1+2.2+3.3+.....+100.100
A=1.(2-1)+2.(3-1)+.......+100.(101-1)
A=1.2+2.3+......+100.101-1-2-3-4-.......-100
3A=1.2.(3-0)+2.3.(4-1)+......+100.101.(102-99)-(1+2+3+....+100).3
3A=1.2.3+2.3.4+....+100.101.102-1.2.3-2.3.4-.....-99.100.101-(1+2+3+......+100).3
3A=100.101.102-101.100.3
3A=101.100.(102-3)
3A=101.100.99
A=101.100.33
A=(mấy tự tính)
a, A = 1 + 2 + 22 + ... + 299
= (1 + 2) + (22 + 23) + ... + (298 + 299)
= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)
= 1 . 3 + 22 . 3 + ... + 298 . 3
Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3
hay A chia hết cho 3 (đpcm)
b, A = 1 + 2 + 22 + ... + 299
= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)
= 1 . 15 + 24 . 15 + ... + 296 . 15
Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15
hay A chia hết cho 15 (đpcm)
Tiếp bài của @trankhanhvy2008
A = 1 + 2 + 22 + 23 + 24 + ... + 299
2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )
= 2 + 22 + 23 + 24 + ... + 2100
2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )
=> A = 2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299
= 2100 - 1
2100 - 1 < 2100
=> A < 2100
AI MÀ GIẢI!
CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!
\(P=1-2^2+3^2-4^2+...+99^2-100^2\)
\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(99-100\right)\left(99+100\right)\)
\(=-\left(3+7+...+199\right)\)
P có số phần tử \(\frac{199-3}{4}+1=50\)
\(-P=\frac{50\left(199+3\right)}{2}=5050\)
\(\Rightarrow P=-5050\)
Đặt A=12-22+.....-20162
=> -A=22-12+42-32+62-52...+20162-20152
-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)
-A=3+7+11+...+4031
-A=[(4031-3):4+1]:2 x (3+4031)
-A=2033136
A=-2033136
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}