K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2018

\(A=1+6+6^2+...+6^{100}\)

\(6A=6+6^2+6^3+...+6^{101}\)

\(6A-A=\left(6+6^2+...+6^{101}\right)-\left(1+6+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

Hoàn toàn tương tự với các câu b) c)

12 tháng 12 2018

\(A=1+6+6^2+6^3+...+6^{100}\)

\(6A=6+6^2+6^3+6^4+...+6^{101}\)

\(6A-A=\left(6+6^2+6^3+6^4+...+6^{101}\right)-\left(1+6+6^2+...+6^{100}\right)\)

\(5A=6^{101}-1\)

\(A=\frac{6^{101}-1}{5}\)

3 tháng 11 2018

A=1.1+2.2+3.3+.....+100.100

A=1.(2-1)+2.(3-1)+.......+100.(101-1)

A=1.2+2.3+......+100.101-1-2-3-4-.......-100

3A=1.2.(3-0)+2.3.(4-1)+......+100.101.(102-99)-(1+2+3+....+100).3

3A=1.2.3+2.3.4+....+100.101.102-1.2.3-2.3.4-.....-99.100.101-(1+2+3+......+100).3

3A=100.101.102-101.100.3

3A=101.100.(102-3)

3A=101.100.99

A=101.100.33

A=(mấy tự tính)

3 tháng 11 2018

sai rồi bn ơi!

30 tháng 6 2020

a, A = 1 + 2 + 22 + ... + 299

= (1 + 2) + (22 + 23) + ... + (298 + 299)

= 1(1 + 2) + 22(1 + 2) + ... + 298(1 + 2)

= 1 . 3 + 22 . 3 + ... + 298 . 3

Vì 3 chia hết cho 3 nên 1 . 3 + 22 . 3 + ... + 298 . 3 chia hết cho 3

hay A chia hết cho 3   (đpcm)

b, A = 1 + 2 + 22 + ... + 299

= (1 + 2 + 22 + 23) + (24 + 25 + 26 + 27) + ... + (296 + 297 + 298 + 299)

= 1 . 15 + 24 . 15 + ... + 296 . 15

Vì 15 chia hết cho 15 nên 1 . 15 + 24 . 15 + ... + 296 . 15 chia hết cho 15

hay A chia hết cho 15  (đpcm)

30 tháng 6 2020

Tiếp bài của @trankhanhvy2008

A = 1 + 2 + 22 + 23 + 24 + ... + 299

2A = 2( 1 + 2 + 22 + 23 + 24 + ... + 299 )

     = 2 + 22 + 23 + 24 + ... + 2100

2A - A = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + 24 + ... + 299 )

 => A   =  2 + 22 + 23 + 24 + ... + 2100 - 1 - 2 - 22 - 23 - 24 - ... - 299

           = 2100 - 1

2100 - 1 <  2100 

=> A < 2100

23 tháng 10 2015

AI MÀ GIẢI!

CHỈ CÁI ĐỀ THÔI MÀ CŨNG ĐỦ RỐI RỒI!!!!!!!!!!!!!!!!!!

23 tháng 10 2015

bà ra đề khó quá

13 tháng 1 2016

\(P=1-2^2+3^2-4^2+...+99^2-100^2\)

\(=\left(1-2\right)\left(1+2\right)+\left(3-4\right)\left(3+4\right)+...+\left(99-100\right)\left(99+100\right)\)

\(=-\left(3+7+...+199\right)\)

P có số phần tử  \(\frac{199-3}{4}+1=50\)

\(-P=\frac{50\left(199+3\right)}{2}=5050\)

\(\Rightarrow P=-5050\)

 

13 tháng 1 2016

Đặt A=12-22+.....-20162

=> -A=22-12+42-32+62-52...+20162-20152

-A=(2-1)(2+1)+(4-3)(4+3)+(6-5)(6+5)...+(2016-2015)(2016+2015)

-A=3+7+11+...+4031

-A=[(4031-3):4+1]:2 x (3+4031)

-A=2033136

A=-2033136

18 tháng 12 2015

a) A = 1 + 22 + 24 + ... + 22016

=> 4A = 22 + 24 + ... + 22018

=> 4A - A = 22018 - 1

=> 3A = 22018 -1

Theo bài ra : 3A + 1 = 2n

=> 22018 - 1 + 1 = 2n

=> 22018 = 2n

=> n = 2018

b) Ta có :

3n + 1 chia hết cho 2n - 3

=> 6n - 3n + 1 chia hết cho 2n - 3

=> 3.(2n-1) + 1 chia hết cho 2n - 3

=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}

=> 2n \(\in\) {4;6}

=> n \(\in\) {2;3}