giái các Phương trình sau

b) x-2/3 - 2x-3/4= x-1
c) x-5x/...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 1 2021

a, \(\frac{x-2}{3}-\frac{2x-3}{4}=x-1\)

\(\Leftrightarrow\frac{4x-8}{12}-\frac{6x-9}{12}=\frac{12x-12}{12}\)

Khử mẫu : \(\Rightarrow4x-8-6x+9=12x-12\)

\(\Leftrightarrow-2x+1=12x-12\Leftrightarrow-14x=-13\Leftrightarrow x=\frac{13}{14}\)

c, \(\frac{x-5x}{6}+\frac{1}{3}=2-x\)

\(\Leftrightarrow\frac{x-5x}{6}+\frac{2}{6}=\frac{12-6x}{6}\)

Khử mẫu : \(\Rightarrow x-5x+2=12-6x\)

\(\Leftrightarrow-6x+6x=12-2\Leftrightarrow0\ne10\)

Vậy phương trình vô nghiệm 

11 tháng 8 2016

bạn đăng vừa thôi nhé chứ đăng nhiều thế này ít người khiên trì giải hết lắm bạn nên đăng từng bài cho đỡ dài

23 tháng 6 2021

a, \(4x\left(x-3\right)-3x\left(2+x\right)=4x^2-12x-6x^2-3x^2=-5x^2-12x\)

b, \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)=10x^2+4x+6x^2-11x+3\)

\(=16x^2-7x+3\)

c, \(\left(x-1\right)^2-\left(x+2\right)\left(x-2\right)=x^2-2x+1-x^2+4=-2x+5\)

d, \(\left(1+2x\right)+2\left(1+2x\right)\left(x-1\right)+\left(x-1\right)^2\)

\(=1+2x+2\left(x-1+2x^2-2x\right)+x^2-2x+1\)

\(=x^2+2+2\left(-x-1+2x^2\right)=x^2+2-2x-2+4x^2=5x^2-2x\)

25 tháng 1 2017

2x3 + 3x2 + 6x + 5 = 02

<=> 2x3 + x2 + 5x + 2x2 + x + 5 = 0

<=> x(2x2 + x + 5) + (2x2 + x + 5) = 0

<=> (2x2 + x + 5)(x + 1) = 0

<=> x + 1 = 0 (vì 2x2 + x + 5 \(\ge\) 4,875 > 0 \(\forall\) x)

<=> x = - 1

Vậy tập nghiệm của pt là \(S=\left\{-1\right\}\)

25 tháng 1 2017

b) 4x4 + 12x3 + 5x2 - 6x - 15 = 0

<=> 4x4 + 10x3 + 2x3 + 5x2 - 6x - 15 = 0

<=> 2x3(2x + 5) + x2(2x + 5) - 3(2x + 5) = 0

<=> (2x + 5)(2x3 + x2 - 3) = 0

<=> (2x + 5)(2x3 - 2x2 + 3x2 - 3) = 0

<=> (2x + 5)(x - 1)(2x2 + 3x + 3) = 0

<=> (2x + 5)(x - 1)[x2 + (x + 3/2)2 + 3/4]= 0

Mà x2 + (x + 3/2)2 + 3/4 > 0\(\forall x\)

\(\Rightarrow\left[\begin{matrix}2x+5=0\\x-1=0\end{matrix}\right.\)\(\Leftrightarrow\left[\begin{matrix}x=-\frac{5}{2}\\x=1\end{matrix}\right.\)

Vậy ...

19 tháng 11 2016

Evaluate the expression ?$x^3+12x+48x+64$ at ?$x=-4$

x3 + 12x + 48x + 64

= (x + 4)2

= (- 4 + 4)2

= 02

= 0

Fill in the blank: ?$x^3-$............?$=(x-2)(x^2+2x+4)$

x3 - a = (x - 2)(x2 + 2x + 4)

x3 - a = x3 - 8

a = 8

Fill in the blank: ?$(x-1)^3=x^3-3x^2+$?$x-1$
(x - 1)3
= x3 - 3x2 + 3x - 1
 
Fill in the blank: ?$(x+1)^3=x^3+$?$x^2+3x+1$
(x + 1)3
= x3 + 3x2 + 3x + 1

Evaluate ?$(a-b)^2$, given ?$a+b=8$ and ?$ab=10$.
Answer: ?$(a-b)^2=$

a + b = 8

(a + b)2 = 82

a2 + b2 + 2ab = 64

a2 + b2 + 2 . 10 = 64

a2 + b2 + 20 = 64

a2 + b2 = 64 - 20

a2 + b2 = 44

(a - b)2

= a2 - 2ab + b2

= 44 - 2 . 10

= 44 - 20

= 24
Given ?$A=(x-5)(x^2+5x+25)-x^2(x+3)+3x^2$.
Evaluate A at ?$x=1000$.
Answer: A?$=$

A = (x - 5)(x2 + 5x + 25) - x2(x + 3) + 3x2

= x3 - 125 - x3 - 3x2 + 3x2

= - 125

Given ?$A=(x-5)(2x+1)-2x(x-3)+3x$.
Evaluate A at ?$x=100$.
Answer: A?$=$

A = (x - 5)(2x + 1) - 2x(x - 3) + 3x
= 2x2 + x - 10x - 5 - 2x2 + 6x + 3x
= - 5
Given a rectangle with dimension ?$(2x+y)$ by ?$(2x-y)$. Find the area of the rectangle when ?$x=\sqrt{10}m$ and ?$y=1m$.
Answer: ?$m^2$.
 
Given ?$ab=4$ and ?$a-b=5$. Evaluate ?$a^3-b^3$.
Answer: ?$a^3-b^3=$
a - b = 5
(a - b)2 = 52
a2 - 2ab + b2 = 25
a2 + b2 - 2 . 4 = 25
a2 + b2 - 8 = 25
a2 + b2 = 25 + 8
a2 + b2 = 33
a3 - b3
= (a - b)(a2 + ab + b2)
= 5 . (33 + 4)
= 5 . 37
= 185

Given ?$ab=4$ and ?$a+b=5$. Evaluate ?$a^3+b^3$.
Answer: ?$a^3+b^3=$
a + b = 5
(a + b)2 = 52
a2 + 2ab + b2 = 25
a2 + b2 + 2 . 4 = 25
a2 + b2 + 8 = 25
a2 + b2 = 25 - 8
a2 + b2 = 17
a3 + b3
= (a + b)(a2 - ab + b2)
= 5 . (17 - 4)
= 5 . 13
= 65
26 tháng 3 2017

a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x

x2+2x+3=(x+1)2+2>0,với mọi x

ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)

=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0

<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)

<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)

Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)

15 tháng 1 2017

củ lạc j đây số nọ đâm vào số kia

4 tháng 3 2017

b. \(\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}=0\)\(\Leftrightarrow\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}-20=0\)\(\Leftrightarrow\dfrac{x+106}{3}-2+\dfrac{x+116}{4}-4+\dfrac{x+130}{5}-6+\dfrac{x+148}{6}-8=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\ne0\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy PT có nghiệm \(x=-100\)

5 tháng 3 2017

\(x^4+x^3+2x^2+x+1=0\\ \Leftrightarrow\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\\ \)

Vì x^2+x+1\(>0\) với mọi x và x^2+1\(>0\) với mọi x nên (x^2+x+1)(x^2+1)>0 với mọi x

Vậy phương trình vô nghiệm

8 tháng 9 2016

\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)

\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)

\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)

\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)

\(=\frac{x}{x-1}\)

8 tháng 9 2016

e cảm ơn cj nhug bài này thầy chữa tối wa òi hehe