K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2017

b. \(\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}=0\)\(\Leftrightarrow\dfrac{x+106}{3}+\dfrac{x+116}{4}+\dfrac{x+130}{5}+\dfrac{x+148}{6}-20=0\)\(\Leftrightarrow\dfrac{x+106}{3}-2+\dfrac{x+116}{4}-4+\dfrac{x+130}{5}-6+\dfrac{x+148}{6}-8=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}\ne0\right)=0\)

\(\Leftrightarrow x+100=0\)

\(\Leftrightarrow x=-100\)

Vậy PT có nghiệm \(x=-100\)

5 tháng 3 2017

\(x^4+x^3+2x^2+x+1=0\\ \Leftrightarrow\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)=0\\ \Leftrightarrow\left(x^2+x+1\right)\left(x^2+1\right)=0\\ \)

Vì x^2+x+1\(>0\) với mọi x và x^2+1\(>0\) với mọi x nên (x^2+x+1)(x^2+1)>0 với mọi x

Vậy phương trình vô nghiệm

4 tháng 3 2017

a) \(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x^2+x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-1\\\left(x+\frac{1}{2}\right)^2=-\frac{3}{4}\end{cases}}}\Rightarrow\)Vô lí

b)\(\Leftrightarrow\left(\frac{x+106}{3}-2\right)+\left(\frac{x+116}{4}-4\right)+\left(\frac{x+130}{5}-6\right)+\left(\frac{x-148}{6}-8\right)=0\Leftrightarrow\frac{x+100}{3}+\frac{x+100}{4}+\frac{x+100}{5}+\frac{x+100}{6}=0\Leftrightarrow\left(x+100\right)\left(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)=0\Leftrightarrow x+100=0\Leftrightarrow x=-100\)

26 tháng 3 2017

a) ta có :x2+2x+2=(x+1)2+1>0,với mọi x

x2+2x+3=(x+1)2+2>0,với mọi x

ĐKXĐ:x\(\in\)R.Đặt x2+2x+2=a (a>0),ta có:\(\dfrac{a-1}{a}+\dfrac{a}{a+1}=\dfrac{7}{6}\)

<=>\(\dfrac{6\left(a-1\right)\left(a+1\right)}{6a\left(a+1\right)}+\dfrac{6a^2}{6a\left(a+1\right)}=\dfrac{7a\left(a+1\right)}{6a\left(a+1\right)}\)

=>6(a2-1)+6a2=7a2+7a<=>6a2-6+6a2=7a2+7a<=>12a2-7a2-7a-6=0

<=>5a2-7a-6=0<=>(a-2)(5a+3)=0<=>a-2=0(vì a>0,nên 5a+3>0)

<=>a=2=>x2+2x+2=2<=>x(x+2)=0<=>\(|^{x=0}_{x+2=0< =>x=-2}\)

Vậy tặp nghiệm của PT là S\(=\left\{0;-2\right\}\)

3 tháng 1 2021

a) 3x - 2(5 + 2x) =45 - 2x

=> 3x - 10 - 4x = 45 - 2x

=> 3x - 4x + 2x = 45 + 10

=> x = 55

b) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

=> \(\frac{x-3}{5}=\frac{2x+17}{3}\)

=> 5(2x + 17) = 3(x - 3)

=> 10x + 85 = 3x - 9

=> 7x = -94

=> x = -94/7

c) \(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)

=> \(\frac{5x-3}{6}-\frac{7x-1}{4}=\frac{4x-33}{7}\)

=> \(\frac{10x-6}{12}-\frac{21x-3}{12}=\frac{4x-33}{7}\)

=> \(\frac{-11x-3}{12}=\frac{4x-33}{7}\)

=> (-11x - 3).7 = (4x - 33).12

= -77x - 21 = 48x - 396

=> x = 3

d) (x - 1)(5x + 3) = (3x - 8)(x - 1)

=> (x - 1)(5x + 3) - (3x - 8)(x -1) = 0

=> (x - 1)(2x + 11) = 0

=> \(\orbr{\begin{cases}x-1=0\\2x+11=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-5,5\end{cases}}\) 

e) (x - 1)(x2 + 5x - 2) - (x3 - 1) = 0

=> (x - 1)(x2 + 5x - 2) - (x - 1)(x2 + x + 1) = 0

=> (x - 1)(4x - 3) = 0

=> \(\orbr{\begin{cases}x-1=0\\4x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=0,75\end{cases}}\)

f) \(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\) 

=> \(\left(\frac{x-17}{33}-1\right)+\left(\frac{x-21}{29}-1\right)+\left(\frac{x}{25}-2\right)=0\)

=> \(\frac{x-50}{33}+\frac{x-50}{29}+\frac{x-50}{25}=0\)

=> \(\left(x-50\right)\left(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\right)=0\)

=> x - 50 = 0 (Vì \(\frac{1}{33}+\frac{1}{29}+\frac{1}{25}\ne0\))

=> x = 50

3 tháng 1 2021

b, \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)

\(\Leftrightarrow\frac{x-3}{5}=\frac{17+2x}{3}\Leftrightarrow3x-9=85+10x\)

\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)

f, sửa : \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+5}{61}+\frac{x+7}{59}\)

\(\Leftrightarrow\frac{x+1}{65}+1+\frac{x+3}{63}+1=\frac{x+5}{61}+1+\frac{x+7}{59}+1\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}=\frac{x+66}{61}+\frac{x+66}{59}\)

\(\Leftrightarrow\frac{x+66}{65}+\frac{x+66}{63}-\frac{x+66}{61}-\frac{x+66}{59}=0\)

\(\Leftrightarrow\left(x+66\right)\left(\frac{1}{65}+\frac{1}{63}-\frac{1}{61}-\frac{1}{59}\ne0\right)=0\)

\(\Leftrightarrow x=-66\)

c1: giải các phương trinh sau : a) (2x+1)2 -2x -1=2 b) (x2 -3x )2 + 5(x2 -3x)+6=0 c) x2 -x -1)(x2 - x) -2=0 d) (5-2x)2 + 4x - 10 =0 e) (x2 + 2x +3)(x2 +2x+1)= 3 f) x(x-1)(x2-x+1)-6=0 c2: giải các phương trinh sau: a) \(\frac{7x+7}{x-1}=\frac{2}{3}\) b) \(\frac{2}{1-x}=\frac{1}{3-7x}\) c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\) d) \(\frac{14}{3x-12}+\frac{2-x}{x-4}=\frac{3}{8-2x}-\frac{5}{6}\) e) \(\frac{1}{x+2}+\frac{2}{x-2}=\frac{2}{x^2-4}\) c3: giải các phương...
Đọc tiếp

c1: giải các phương trinh sau :

a) (2x+1)2 -2x -1=2

b) (x2 -3x )2 + 5(x2 -3x)+6=0

c) x2 -x -1)(x2 - x) -2=0

d) (5-2x)2 + 4x - 10 =0

e) (x2 + 2x +3)(x2 +2x+1)= 3

f) x(x-1)(x2-x+1)-6=0

c2: giải các phương trinh sau:

a) \(\frac{7x+7}{x-1}=\frac{2}{3}\)

b) \(\frac{2}{1-x}=\frac{1}{3-7x}\)

c) \(\frac{1}{x-2}+3=\frac{3-x}{x-2}\)

d) \(\frac{14}{3x-12}+\frac{2-x}{x-4}=\frac{3}{8-2x}-\frac{5}{6}\)

e) \(\frac{1}{x+2}+\frac{2}{x-2}=\frac{2}{x^2-4}\)

c3: giải các phương trinh và biểu diển tập nghiệm trên trục số

a) \(\frac{x-1}{2}-\frac{7x+3}{15}\le\frac{2x+1}{3}+\frac{3-2x}{-5}\)

b) \(\frac{2x+1}{2}-\frac{2x^2+3}{-4}>\frac{x\left(5-3x\right)}{-6}-\frac{4x+1}{-5}\)

c) \(\frac{4x-2}{3}-x+3\le\frac{1-5x}{4}\)

d) \(\frac{x+4+}{5}-x-5\ge\frac{x+3}{3}-\frac{x-2}{2}\)

c4: cho a>b ,hãy so sánh :

a) -3a+4 và -3b +4

b) 2+3a và 2+3b

c) 2a -3 và 2b -3

d) 2a -4 và 2b + 5

giải bài toán bằng cách lập phương trinh

bai1: hai ô tô cùng khởi hành từ hai bến cánh nhau 175 km để gặp nhau. xe 1 đi sớm hơn xe 2 là 1 giờ 30 phút với vận tốc 30kn/h .Hỏi sau mấy giờ hai xe gặp nhau ?

bai2: một người đi xe đạp từ tỉnh A đến tỉnh B sơm hơn 1 giờ. Tính vận tốc của mỗi xe ?biết rằng vận tốc xe máy gấp 2,5 vận tốc xe đạp .

0
Dạng 1: Phương trình bậc nhất Bài 1: Giải các phương trình sau : a) 0,5x (2x - 9) = 1,5x (x - 5) b) 28 (x - 1) - 9 (x - 2) = 14x c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2 e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\) f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\) g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\) h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\) i)...
Đọc tiếp

Dạng 1: Phương trình bậc nhất

Bài 1: Giải các phương trình sau :

a) 0,5x (2x - 9) = 1,5x (x - 5)

b) 28 (x - 1) - 9 (x - 2) = 14x

c) 8 (3x - 2) - 14x = 2 (4 - 7x) + 18x

d) 2 (x - 5) - 6 (1 - 2x) = 3x + 2

e) \(\frac{x+7}{2}-\frac{x-3}{5}=\frac{x}{6}\)

f) \(\frac{2x-3}{3}-\frac{5x+2}{12}=\frac{x-3}{4}+1\)

g) \(\frac{x+6}{2}+\frac{2\left(x+17\right)}{2}+\frac{5\left(x-10\right)}{6}=2x+6\)

h) \(\frac{3x+2}{5}-\frac{4x-3}{7}=4+\frac{x-2}{35}\)

i) \(\frac{x-1}{2}+\frac{x+3}{3}=\frac{5x+3}{6}\)

j) \(\frac{x-3}{5}-1=\frac{4x+1}{4}\)

Dạng 2: Phương trình tích

Bài 2: Giải phương trình sau :

a) (x + 1) (5x + 3) = (3x - 8) (x - 1)

b) (x - 1) (2x - 1) = x(1 - x)

c) (2x - 3) (4 - x) (x - 3) = 0

d) (x + 1)2 - 4x2 = 0

e) (2x + 5)2 = (x + 3)2

f) (2x - 7) (x + 3) = x2 - 9

g) (3x + 4) (x - 4) = (x - 4)2

h) x2 - 6x + 8 = 0

i) x2 + 3x + 2 = 0

j) 2x2 - 5x + 3 = 0

k) x (2x - 7) - 4x + 14 = 9

l) (x - 2)2 - x + 2 = 0

Dạng 3: Phương trình chứa ẩn ở mẫu

Bài 3: Giải phương trình sau :

\(\frac{90}{x}-\frac{36}{x-6}=2\) \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
\(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
\(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\) \(\frac{3}{4\left(x-5\right)}+\frac{15}{50-2x^2}=\frac{-7}{6\left(x+5\right)}\)
\(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\) \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)

0
23 tháng 3 2019

a) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3x-24}\) \(ĐK:x\ne8\)

\(\Leftrightarrow\frac{3}{2\left(x-8\right)}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{3x-102}{3\left(x-8\right)}\)

\(\Leftrightarrow\frac{3.3}{6.\left(x-8\right)}+\frac{6.\left(3x-20\right)}{6\left(x-8\right)}-\frac{2\left(3x-102\right)}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{9+18x-120-6x+204}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow\frac{12x+93}{6\left(x-8\right)}=\frac{-1}{8}\)

\(\Leftrightarrow8\left(12x+93\right)=-6\left(x-8\right)\)

\(\Leftrightarrow96x+744=-6x+48\)

\(\Leftrightarrow102x=-696\)

\(\Leftrightarrow x=\frac{-116}{17}\) (nhận)

Vậy .....

b) \(\frac{1}{3-x}+\frac{14}{x^2-9}=\frac{x-4}{3+x}+\frac{7}{3+x}\) \(ĐK:x\ne\pm3\)

\(\Leftrightarrow\frac{1}{3-x}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{x-4}{3+x}+\frac{7}{3+x}\)

\(\Leftrightarrow-\frac{3+x}{\left(x-3\right)\left(3+x\right)}+\frac{14}{\left(x-3\right)\left(3+x\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{-3-x+14}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x-4\right)\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}+\frac{7\left(x-3\right)}{\left(3+x\right)\left(x-3\right)}\)

\(\Leftrightarrow-3-x+14=x^2-3x-4x+12+7x-21\)

\(\Leftrightarrow x=-5\) (nhận)

Vậy ....