Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)

-------------------- giúp...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

4( 1 . 2 .3 ) = 1.2.3.4-0.1.2.3

4(2.3.4) = 2.3.4.5 - 1.2.3.4

4(3.4.5)=3.4.5.6 - 2.3.4.5 

4(n-1)n(n+1)=(n-1)n(n+1)(n+1)-(n-2)(n-1)n(n+1)

=> 4B = (n-1)n(n+1)(n+2) => B = (n-1)n(n+1)(n+2) : 4 

k nha 

24 tháng 3 2016

= 1/2*(1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + ... + 1/8*9 - 1/9*10) = 1/2*(1/1*2 - 1/9*10)=1/2 * 22/45 = 11/45

24 tháng 3 2016

2A = \(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)

2A = \(\frac{1}{2}-\frac{1}{90}\)

2A = \(\frac{44}{90}\)

A = \(\frac{22}{90}\)

19 tháng 3 2016

=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+............+\frac{1}{18.19.20}\)

=\(\frac{2}{1.2.3.2}+\frac{2}{2.3.4.2}+............+\frac{2}{18.19.20.2}\)

=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}............+\frac{1}{18.19}-\frac{1}{19.20}\)

=\(\frac{1}{1.2}-\frac{1}{19.20}\)

=\(\frac{189}{380}\)

1 tháng 3 2017

Ta quy đồng :

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)

\(\Rightarrow\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\) (đpcm)

18 tháng 3 2018

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

15 tháng 4 2019

A = 5/20.22 + 5/22.24+...+5/79.81

A = 5/2 . (2/20.22 + 2/22.24 + ... + 2/79.81)

A = 5/2 . (1/20 - 1/22 + 1/22 - 1/24 + ... + 1/79 - 1/81)

A = 5/2 . (1/20 - 1/81)

A = 5/2 . 61/1620

A = 61/648

15 tháng 4 2019

B = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.29

2B = 2/1.2.3 + 2/2.3.4 + ... + 2/18.19.20

\(\Rightarrow\)B = 1/1.2 + 1/2.3 + ... + 1/19.20

\(\Rightarrow\)B = 1/1.2 - 1/19.20

B = 1/2 - 1/380

B = 189/380

4 tháng 5 2016

= 1/2 . 2/3 .... 2014/2015 . 2015/2016

= 1/2016

4 tháng 5 2016

1/2016

12 tháng 7 2017

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

12 tháng 7 2017

mình làm ko biết đúng không 

nhung chac la se dung

4 tháng 10 2017

\(linh_1=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\right)\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{4.5}\right)\)

\(linh_1=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{20}\right)=\dfrac{1}{2}.\dfrac{9}{20}=\dfrac{9}{40}\)

\(linh_2=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{8.9.10}\)

\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\)\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\)

\(linh_2=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{90}\right)=\dfrac{1}{2}.\dfrac{22}{45}=\dfrac{11}{45}\)

4 tháng 10 2017

a/ \(G=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}\)

\(\Leftrightarrow2G=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{1.2}-\dfrac{1}{4.5}\)

\(\Leftrightarrow2G=\dfrac{1}{2}-\dfrac{1}{20}\)

\(\Leftrightarrow2G=\dfrac{9}{20}\)

\(\Leftrightarrow G=\dfrac{9}{40}\)

b/ \(H=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+.....+\dfrac{1}{8.9.10}\)

\(\Leftrightarrow2H=\dfrac{2}{1.2.3}+\dfrac{2}{3.4.5}+.....+\dfrac{2}{8.9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+.....+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)

\(\Leftrightarrow2H=\dfrac{1}{2}-\dfrac{1}{90}\)

\(\Leftrightarrow2H=\dfrac{22}{45}\)

\(\Leftrightarrow H=\dfrac{22}{90}\)