Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{9^2}\)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\); \(\frac{1}{3^2}< \frac{1}{2\cdot3}\); \(\frac{1}{4^2}< \frac{1}{3\cdot4}\); ....; \(\frac{1}{9^2}< \frac{1}{8\cdot9}\)
\(\Rightarrow S< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)
\(\Rightarrow S< 1-\frac{1}{9}\)
\(\Rightarrow S< \frac{8}{9}\) (1)
\(\frac{1}{2^2}>\frac{1}{2\cdot3};\frac{1}{3^2}>\frac{1}{3\cdot4};\frac{1}{4^2}>\frac{1}{4\cdot5};...;\frac{1}{9^2}>\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{9\cdot10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\)
\(\Rightarrow S>\frac{1}{2}-\frac{1}{10}\)
\(\Rightarrow S>\frac{2}{5}\) (2)
(1)(2) => 2/5 < S < 8/9
\(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}< \frac{1}{a^2}\)
\(\frac{1}{a}-1-\frac{1}{a}=-1< \frac{1}{a^2}\) Vì \(\frac{1}{a^2}>0;-1< 0\)
Khi đó thì ĐỀ SAI
a) 2 mũ 1 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ... +2 mũ 10
Gọi biểu thức trên là A , ta có :
A = 2^1+2^2 9+2^3+ 2^4 +...+2^10
2A= 2^2 +2^3+2^4+...+2^10+2^11
2A-A=2^11-2^1
A=2^10
b) Làm tương tự như tớ từ dòng thứ 3 mà tớ viết
5A = 5^2+5^3+...+5^25 5^26
5A-A=5^26 - 5^1
A=5^25
xin lỗi vì lúc đó mình cũng đang học bài nên hơi mất tập trung và quên chia 4 đến lúc đọc lại câu trả lời mới thấy sót
Giúp mình bài này nữa với. Khó quá >^<
Học sinh lớp 6A khi chia tổ. Nếu chia 4 tổ; 5 tổ; 8 tổ đều vừa đủ. Tính số học sinh của lớp 6A. Biết rằng số h/s lớp đó có khoảng từ 35 đến 45 em.
Nhanh giúp mik với chứ chiều mình thi rồi ToT
2A=2+2^2+...+2^2019
=>A=2^2019-1
=>A và B là hai số liên tiếp
Bài 2:
Ta thấy: 52 > 4.5
62 > 5.6
72 > 6.7
....
20172 > 2016.2017
\(\Rightarrow\)\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
....
\(\frac{1}{2017^2}< \frac{1}{2016.2017}\)
Cộng vế với nhau, ta có:
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{2017^2}\) < \(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{2016.2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}-\frac{1}{2017}\)
\(\Rightarrow\)A < \(\frac{1}{4}\)( vì \(\frac{1}{2017}>0\))
k giúp mik ✅
\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+\frac{1}{8^2}\)
\(\Rightarrow B=\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{1}{1.2}+...+\frac{1}{7.8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{2}+...+\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< 1-\frac{1}{8}\)
\(\Rightarrow\frac{1}{2^2}+...+\frac{1}{8^2}< \frac{7}{8}< 1\)
\(\Rightarrow B< 1\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\); \(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); ...; \(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)
=> S < \(5\left(1-\frac{1}{100}\right)=5.\frac{99}{100}< 5.1=5\)=> S<5
Lại có: \(\frac{1}{2^2}>\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\); \(\frac{1}{3^2}>\frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\); \(\frac{1}{100^2}>\frac{1}{100.101}=\frac{1}{100}-\frac{1}{101}\)
=> \(S>5\left(\frac{1}{2}-\frac{1}{101}\right)=5.\frac{101-2}{2.101}=\frac{5.99}{2.101}~2,45\)=> S>2
Vậy 2 < S < 5 => Đpcm
Ta có :
\(5^{27}=\left(5^3\right)^9=125^9\)
\(2^{63}=\left(2^7\right)=128^9\)
Vì 125 < 128
\(\Rightarrow5^{27}< 2^{63}_{\left(1\right)}\)
Lại có :
\(2^{63}=\left(2^9\right)^7=512^7\)
\(5^{28}=\left(5^4\right)^7=625^7\)
Vì 512 < 625
\(\Rightarrow2^{63}< 5^{28}_{\left(1\right)}\)
\(T\text{ừ}:_{\left(1\right)};_{\left(2\right)}\Rightarrow5^{27}< 2^{63}< 5^{28}\)