Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Đặt \(A=\frac{11^{13}+1}{11^{14}+1}\) và \(B=\frac{11^{14}+1}{11^{15}+1}\)
Có : \(A=\frac{11^{13}+1}{11^{14}+1}\)
\(\Rightarrow11A=\frac{11^{14}+11}{11^{14}+1}=\frac{11^{14}+1+10}{11^{14}+1}=1+\frac{10}{11^{14}+1}\)
Lại có : \(B=\frac{11^{14}+1}{11^{15}+1}\)
\(\Rightarrow11B=\frac{11^{15}+11}{11^{15}+1}=\frac{11^{15}+1+10}{11^{15}+1}=1+\frac{10}{11^{15}+1}\)
Vì 1114+1<1115+1
\(\Rightarrow\frac{10}{11^{14}+1}>\frac{10}{11^{15}+1}\Rightarrow1+\frac{10}{11^{14}+1}>1+\frac{10}{11^{15}+1}\Rightarrow11A>11B\Rightarrow A>B\)
Vậy A>B.
Bài 2 :
a) Gọi (n+1,2n+3) là d (d là số tự nhiên khác 0)
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)
\(\Rightarrow\left(2n+3\right)-\left(n+1\right)⋮d\)
\(\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
nên (n+1,2n+3) là 1
\(\Rightarrow\frac{n+1}{2n+3}\) là phân số tối giản(đpcm)
b) Gọi (12n+1,30n+2) là d (d là số tự nhiên khác 0)
\(\Rightarrow\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\left(12n+1\right)-\left(30n+2\right)⋮d\)
\(\Rightarrow\left(60n+5\right)-\left(60n+4\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\)
nên (12n+1,30n+2) là 1
\(\Rightarrow\)Phân số \(\frac{12n+1}{30n+2}\)tối giản(đpcm)
c và d tương tự
\(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+....+\frac{1}{20}\)
\(=\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)+\left(\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}\right)\)
\(>\frac{1}{15}\cdot5+\frac{1}{20}\cdot5\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\Rightarrow S>\frac{1}{2}\)
Bài làm
Ta có:
\(\frac{1}{11}>\frac{1}{20}\), \(\frac{1}{12}>\frac{1}{20}\), \(\frac{1}{13}>\frac{1}{20}\), \(\frac{1}{14}>\frac{1}{20}\), \(\frac{1}{15}>\frac{1}{20}\), \(\frac{1}{16}>\frac{1}{20}\), \(\frac{1}{17}>\frac{1}{20}\), \(\frac{1}{18}>\frac{1}{20}\),\(\frac{1}{19}>\frac{1}{20}\)
=> \(S=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}+\frac{1}{16}+\frac{1}{17}+\frac{1}{18}+\frac{1}{19}+\frac{1}{20}>\frac{1}{20}\)
hay \(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+\frac{1}{20}\)
=> \(S=\frac{1}{20}.10=\frac{10}{20}=\frac{1}{2}\)
Do đó: \(S=\frac{1}{2}\)
# Chúc bạn học tốt #
Ta có :
\(\frac{11}{15}=\frac{11\times14}{15\times14}=\frac{154}{210}\);
\(\frac{13}{14}=\frac{13\times15}{14\times15}=\frac{195}{210}\)
Vì : \(\frac{154}{210}< \frac{195}{210}\)nên \(\frac{11}{15}< \frac{13}{14}\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)
\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)
\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)
\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)
\(A< \frac{1}{2}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{10}\)\(+\)\(\frac{1}{10}\)\(-\)\(\frac{1}{11}\)\(+\)\(\frac{1}{11}\)\(-\)\(\frac{1}{12}\)\(+\)\(\frac{1}{12}\)\(-\)\(\frac{1}{13}\)\(+\)\(\frac{1}{13}\)\(-\)\(\frac{1}{14}\)\(+\)\(\frac{1}{14}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{1}{9}\)\(-\)\(\frac{1}{15}\)
\(A\)\(=\)\(\frac{2}{45}\)
\(A=\left(\frac{1}{9}.\frac{1}{10}+\frac{1}{10}.\frac{1}{11}\right)+\left(\frac{1}{11}.\frac{1}{12}+\frac{1}{12}.\frac{1}{13}\right)+\left(\frac{1}{13}.\frac{1}{14}+\frac{1}{14}.\frac{1}{15}\right)\)
Sau đó nhân phân phối ra là xong nhé bạn
Vì 1113 . 1115 = 1114 . 1114 = 1128 nên \(\frac{11^{13}+1}{11^{14}+1}=\frac{11^{14}+1}{11^{15}+1}\)