Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a). n/n+1 < n+2/n+3
b). n/n+3 > n−1/n+4
c). n/2n+1 < 3n+1/6n+3
k mk nha
\(\frac{n}{n+1}< 1\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}=\frac{n+2}{n+3}\)
=>n/n+1<n+2/n+3
vậy........
b)\(\frac{n}{n+3}>\frac{n}{n+4}>\frac{n-1}{n+4}\Rightarrow\frac{n}{n+3}>\frac{n}{n+4}\)
vậy.....
c)\(\frac{n}{2n+1}=\frac{3n}{6n+3}< \frac{3n+1}{6n+3}\)
vậy.......
TL :
Ko biết thì đừng làm
Nhớ làm hết , chi tiết mới đc 1 SP
HT
a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)
Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)
\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)
b)
Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)
Còn: \(\frac{2004.2005-1}{2004.2005}=1\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)
P/s: Mình không chắc câu b) Nhé
Ta thấy : n > n - 3
=> \(\frac{n}{n-1}>1\)
Có : n + 1 < n + 2
=> \(\frac{n+1}{n+2}< 1\)
=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)
a) \(\frac{5}{9}=\frac{20}{36};\frac{1}{4}=\frac{9}{36}\)
\(\frac{20}{36}>\frac{9}{36}\Rightarrow\frac{5}{9}>\frac{1}{4}\)
\(\frac{72}{73}=\frac{4248}{4307};\frac{58}{59}=\frac{4234}{4307}\)
\(\frac{4248}{4307}>\frac{4234}{4307}\Rightarrow\frac{72}{73}>\frac{58}{59}\)
\(\frac{n}{n+3}=\frac{n+1}{n-1}=\frac{n+1}{3-2}=\frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+3}=\frac{n+1}{n+2}\)
a) \(\frac{n}{n+1}=\frac{n+1-1}{n+2-1}\)và \(\frac{n+1}{n+2}\)
\(\Rightarrow\frac{n+1-1}{n+2-1}< \frac{n+1}{n+2}\)
\(\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+2}\)
Vậy \(\frac{n}{n+1}< \frac{n+1}{n+2}\)
Nếu bn thấy đúng thì cho mk nha, thanks
a) nn+1 =n+1−1/n+2−1 và n+1/n+2
⇒n+1−1/n+2−1 <n+1/n+2
⇒n/n+1 <n+1/n+2
Vậy n/n+1 <n+1/n+2
Ta có : \(\left(-n-2\right).\left(-n-2\right)\)
\(=\left(-n-2\right).-n-\left(-n-2\right).2\)
\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)
\(=n^2+2n+2n+4\)
\(=n^2+4n+4\)( 1 )
\(\left(n+1\right)\left(n+3\right)\)
\(=\left(n+1\right).n+\left(n+1\right).3\)
\(=n^2+n+3n+3\)( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)
\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)
Chúc bạn học tốt !!!!