Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
11 < 10001000
22 < 10001000
33 < 10001000
....
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
=> B < 1000.10001000 = 10001001 = A
Vậy B < A
Ta có:
11 < 10001000
22 < 10001000
............
999999 < 10001000
10001000 = 10001000
=> B = 11 + 22 + 33 + ...+ 999999 + 10001000 < 10001000 + ...+ 10001000 (Có 1000 số 10001000)
<=> B < 1000.10001000 = 10001001 = A
Vậy.................
hok tốt
A = 10002015+2016 = 10004031
B = 10004031
=> A = B
#Học tốt!!!
\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)
\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)
Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)
\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)
=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)
=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
=> \(B>A\)