Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : \(A=\frac{2016^{2016}+2}{2016^{2016}-1}\)
\(\Leftrightarrow A=\frac{2016^{2016}-1+3}{2016^{2016}-1}\)
\(\Leftrightarrow A=1+\frac{3}{2016^{2016}-1}\)
Có : \(B=\frac{2016^{2016}}{2016^{2016}-3}\)
\(\Leftrightarrow B=\frac{2016^{2016}-3+3}{2016^{2016}-3}\)
\(\Leftrightarrow B=1+\frac{3}{2016^{2016}-3}\)
Ta thấy : \(2016^{2016}-1>2016^{2016}-3\)
\(\Leftrightarrow\frac{3}{2016^{2016}-1}< \frac{3}{2016^{2016}-3}\)
\(\Leftrightarrow1+\frac{3}{2016^{2016}-1}< 1+\frac{3}{2016^{2016}-3}\)
\(\Leftrightarrow A< B\)
a, Xét 3 TH:
+ x = 0 => x2016 = 22014 = 0 (chọn)
+ x = 1 => x2016 = 22014 = 1 (chọn)
+ x > 1 => x2016 > x2014 (loại)
Vậy x = 0 hoặc 1
a) A = 1 + 22 + 24 + ... + 22016
=> 4A = 22 + 24 + ... + 22018
=> 4A - A = 22018 - 1
=> 3A = 22018 -1
Theo bài ra : 3A + 1 = 2n
=> 22018 - 1 + 1 = 2n
=> 22018 = 2n
=> n = 2018
b) Ta có :
3n + 1 chia hết cho 2n - 3
=> 6n - 3n + 1 chia hết cho 2n - 3
=> 3.(2n-1) + 1 chia hết cho 2n - 3
=> 3 chia hết cho 2n - 3 hay 2n - 3 \(\in\) Ư(3) = {1;3}
=> 2n \(\in\) {4;6}
=> n \(\in\) {2;3}
\(A=\left(2+2^2+2^3+2^4+2^5\right)+\)\(\left(2^6+2^7+2^8+2^9+2^{10}\right)+....\left(2^{86}+2^{87}+2^{88}+2^{89}+2^{90}\right)\)
\(A=2.\left(1+2+2^2+2^3+2^4\right)+2^6.\left(1+2+2^2+2^3+2^4\right)\)\(+....+2^{86}.\left(1+2+2^2+2^3+2^4\right)\)
\(A=2.21+2^6.21+...+2^{86}.21\)
\(A=21.\left(2+2^6+...+2^{86}\right)⋮21\)
A<B.VÌ:
A=1000(2015+2016)
A=10004031 NÊN A<B
A = 10002015+2016 = 10004031
B = 10004031
=> A = B
#Học tốt!!!