Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{2019}-7^{2020}=7^{2019}\left(1-7\right)\)
\(7^{2018}-7^{2019}=7^{2018}\left(1-7\right)\)
Mà \(7^{2019}>7^{2018}\)
\(\Rightarrow7^{2019}-7^{2020}>7^{2018}-7^{2019}\)
# Học tốt
\(7^{2019}-7^{2020}=7^{2019}-7\cdot7^{2019}=-6.7^{2019}\)
\(7^{2018}-7^{2019}=7^{2018}-7\cdot7^{2018}=-6\cdot7^{2018}\)
vì \(7^{2019}>7^{2018}\Rightarrow-6\cdot7^{2019}< -6\cdot7^{2018}\)
Vậy \(7^{2019}-7^{2020}< 7^{2018}-7^{2019}\)
\(x=2019\)\(\Rightarrow x+1=2020\)
\(\Rightarrow B=x^{2019}-\left(x+1\right).x^{2018}+........-\left(x+1\right).x^2+\left(x+1\right).x+1\)
\(=x^{2019}-x^{2019}+x^{2018}+.......-x^3-x^2+x^2+x+1\)
\(=x+1=2020\)
Vậy tại \(x=2019\)thì \(B=2020\)
Ta có x=2019
=> x + 1=2020
thay x+1 vào B, ta có:
\(A=x^{2019}-\left(x+1\right)x^{2018}+\left(x+1\right)x^{2017}-...+\left(x+1\right)x-1\)
=> \(A=x^{2019}-x^{2019}-x^{2018}+x^{2018}+x^{2017}-...+x^2+x-1\)
=> \(A=x-1=2020-1=2019\)
Ta có x = 2018
=> x + 1 = 2019
\(x^5-2019.x^4+2019.x^3-2019.x^2+2019.x-2020\)
\(=x^5-\left(x+1\right).x^4+\left(x+1\right).x^3-\left(x+1\right).x^2+\left(x+1\right).x-2020\)
\(=x^5-x^5+x^4-x^4+x^3-x^3+x^2-x^2+x-2020\)
\(=x-2020\)
Thay x = 2018 vào biểu thức , ta được
\(2018-2020=-2\)
Vậy giá trị biểu thức là -2
a) Ta có:\(8\left(x-2019\right)^2⋮8\Rightarrow25-y^2⋮8\)\(\left(1\right)\)
Mặt khác: \(8\left(x-2019\right)^2\ge0\Rightarrow25-y^2\ge0\)\(\left(2\right)\)
Từ\(\left(1\right),\left(2\right)\)ta có: \(y^2=1;9;25\)
Xét:\(y^2=1\Rightarrow8\left(x-2019\right)^2=24\Rightarrow\left(x-2019\right)^2=3\left(ktm\right)\)
\(y^2=9\Rightarrow8\left(x-2019\right)^2=16\Rightarrow\left(x-2019\right)^2=2\left(ktm\right)\)
\(y^2=25\Rightarrow8\left(x-2019\right)^2=0\Rightarrow\left(x-2019\right)^2=0\Rightarrow x-2019=0\Rightarrow x=2019\left(tm\right)\)
Vậy \(y=5;x=2019\)
\(y=-5;x=2019\)
\(\frac{5^{2019}.3^{2019}.\left(-11\right)^{2010}}{3^{2019}.5^{2020}.11^{2020}}=\frac{1.1.1}{1.5.1}=\frac{1}{5}\)
Ta có A < \(\frac{2}{3^2-1^2}+\frac{2}{5^2-1^2}+...+\frac{2}{2019^2-1^2}\)
Tới đây ở mẫu số ta có công thức :
a2 - b2 = a2 - ab + ab - b2 = a(a - b) + b(a - b) = (a + b)(a - b)
<=> \(A< \frac{2}{\left(3-1\right)\left(3+1\right)}+\frac{2}{\left(5-1\right)\left(5+1\right)}+....+\frac{2}{\left(2019-1\right)\left(2019+1\right)}\)
\(=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2018.2020}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2018}-\frac{1}{2020}\)
\(=\frac{1}{2}-\frac{1}{2020}=\frac{1009}{2020}< \frac{2019}{2020}=B\)
=> A < B
\(x=\frac{2019^{2020}+1}{2019^{2019}+1}>\frac{2019^{2020}+1+2018}{2019^{2019}+1+2018}=\frac{2019^{2020}+2019}{2019^{2019}+2019}=\frac{2019\left(2019^{2019}+1\right)}{2019\left(2019^{2018}+1\right)}=\frac{2019^{2019}+1}{2019^{2018}+1}\)(1)
\(y=\frac{2019^{2019}+2020}{2019^{2018}+2020}< \frac{2019^{2019}+2020-2019}{2019^{2018}+2020-2019}=\frac{2019^{2019}+1}{2019^{2018}+1}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow x>y\)