K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2020

Đặt A = \(\frac{n+1}{n+2}\)

=> \(\frac{1}{A}=\frac{n+2}{n+1}\)

=> \(\frac{1}{A}-1=\frac{n+2-n-1}{n+1}=\frac{1}{n+1}\)

Đặt B = \(\frac{n+3}{n+4}\)

=> \(\frac{1}{B}=\frac{n+4}{n+3}\)

=> \(\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

25 tháng 8 2020

Đặt \(A=\frac{n+1}{n+2}\)

\(\Rightarrow\frac{1}{A}=\frac{n+2}{n+1}\)

\(\Rightarrow\frac{1}{A}-1=\frac{n+2-n+1}{n+1}=\frac{1}{n+1}\)

Đặt \(B=\frac{n+3}{n+4}\)

\(\Rightarrow\frac{1}{B}=\frac{n+4}{n+3}\)

\(\Rightarrow\frac{1}{B}-1=\frac{n+4-n-3}{n+3}=\frac{1}{n+3}\)

Vì \(\frac{1}{n+1}>\frac{1}{n+3}\Rightarrow\frac{1}{A}-1>\frac{1}{B}-1\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

Vậy \(\frac{n+1}{n+2}< \frac{n+3}{n+4}\)

10 tháng 9 2016

\(\frac{2n+1}{n+3}=\frac{n+n+1}{n+3}=\frac{n}{n+3}+\frac{n+1}{n+3}\)

Do: \(\frac{n}{n+3}< \frac{n}{n+1};\frac{n+1}{n+3}< \frac{n+1}{n+2}\Rightarrow\frac{n}{n+3}+\frac{n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\Rightarrow\frac{2n+1}{n+3}< \frac{n}{n+1}+\frac{n+1}{n+2}\)

24 tháng 6 2018

Ta có : 

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}\)

\(............\)

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

14 tháng 11 2018

\(P=\frac{3}{1!\left(1+2\right)+3!}+\frac{4}{2!\left(1+3\right)+4!}+...+\frac{2017}{2015!\left(1+2016\right)+2017!}\)

\(P=\frac{3}{3\left(1!+2!\right)}+\frac{4}{4\left(2!+3!\right)}+...+\frac{2017}{2017\left(2015!+2016!\right)}\)

\(P=\frac{1}{1!+2!}+\frac{1}{2!+3!}+...+\frac{1}{2015!+2016!}\)

Ta có \(a!>\sqrt{a}\)\(\left(a\inℕ;a>1\right)\) do đó : 

\(P>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{2015}+\sqrt{2016}}\)

\(=\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}+...+\)

\(\frac{\sqrt{2016}-\sqrt{2015}}{\left(\sqrt{2016}+\sqrt{2015}\right)\left(\sqrt{2016}-\sqrt{2015}\right)}=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2016}\)

\(-\sqrt{2015}=\sqrt{2016}-1=\frac{1}{2}+\left(\sqrt{2016}-\frac{3}{2}\right)=\frac{1}{2}+\left(\sqrt{2016}-\sqrt{\frac{9}{4}}\right)>\frac{1}{2}\)

Vậy \(P>\frac{1}{2}\)

Chúc bạn học tốt ~ 

PS : tự nghĩ bừa thui nhé :)) 

14 tháng 11 2018

nhìn đau hết đầu nhưng cảm ơn pn nhé

9 tháng 10 2016

Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)

Ta có:

\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\left(1\right)\) 

Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\left(2\right)\)(đúng. vì \(n\ge2\))

Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)

 

24 tháng 10 2017

mk ko bt 123

4 tháng 1 2018

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )