Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow\)A < 1
b) \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(B=\frac{1}{2^2}.\left(1+\frac{1}{2^2}+\frac{1}{3^3}+...+\frac{1}{n^2}\right)\)
vì \(1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}< 2-\frac{1}{n}< 2\)
\(\Rightarrow B< \frac{1}{2^2}.2=\frac{1}{2}\)
Cho n $\in$∈ N và n $\ge$≥ 2. Hãy so sánh.A= $\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{n^2}$122 +132 +142 +............+1n2 với 1 tịk nhé cho tròn 160
với k>=2:
1/k² < 1/k(k-1) = (k-(k-1))/k(k-1) =1/(k-1) +1/k
apf dụng với k=2,3,...,n sẽ tính được A<1
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(2\right)\)(đúng. vì \(n\ge2\))
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)
Ta có :
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(............\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\)\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\)\(A< 1-\frac{1}{n}< 1\)
Vậy \(A< 1\)
Chúc bạn học tốt ~
a) ta có: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};....;\frac{1}{n^2}<\frac{1}{\left(n-1\right)n}\)
=> \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
Mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}<1\)
Nên \(A<1\)
b) \(B=\frac{1}{2^2}\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)=\frac{1}{4}.\left(1+A\right)\)
Mà A < 1 (theo câu a) nên \(B=\frac{1}{4}\left(A+1\right)<\frac{1}{4}\left(1+1\right)=\frac{1}{2}\)
Vậy.........