Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
333444=(111*3)444=111444*3444=111444*34*111=111444*81111
444333=(111*4)333=111333*4333=111333*43*111=111333*64111
Mả 111444>111333 ; 81111>64111 suy ra 333444>444333
\(333^{444}=333^{3^{111}}\)
\(444^{333}=444^{3^{111}}\)
Vì \(444^{3^{111}}>333^{3^{111}}\)
=> \(333^{444}< 444^{333}\)
Ta có: \(333^{444}=\left(333^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}\)
Vì 333444 và 444333 có cùng số mũ là 111. nên ta so sánh 3334 và 4443
3334=(3.111)4=34.1114=81.1114
4443=(4.111)3=43.1113=64.1113
Vì 81.1114>64.1113 => 3334>4443
=> 333444 > 444333
a) 10^30 và 2^100
Ta có: 10^30 = (10^3)^10 = 1000^10
2^100 = (2^10)^10 = 1024^10
Do 1024^10 > 1000^10 => 2^100 > 10^30
b) 333^444 và 444^333
Ta có: 333^444 = 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
c) 3^450 =(3^3)^150 =27^150
5^300=(5^2)^150=25^150
vì 27^150 >25^150 =>3^450 > 5^300
vậy 3^450 > 5^300
a) \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
Mà \(1000^{10}< 1024^{10}\Rightarrow10^{30}< 2^{100}\)
b) \(3^{400}=\left(3^4\right)^{100}=81^{100}\)
\(5^{300}=\left(5^3\right)^{100}=125^{100}\)
Mà \(81^{100}< 125^{100}\Rightarrow3^{400}< 5^{300}\)
c) \(333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Mà \(81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
Ta có:333444=111444.3444
444333=111333.4333
Ta lại có:3444=(34)111=81111
4333=(43)111=64111
Vì 81111>64111 và 111444>111333
nên 333444>444333
a)\(333^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(444^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Từ \(\hept{\begin{cases}81^{111}>64^{111}\\111^{444}>111^{333}\end{cases}}\Rightarrow81^{111}.111^{444}>64^{111}.111^{333}\Rightarrow333^{444}>444^{333}\)
b)\(5^{300}=\left(5^2\right)^{150}=25^{150};4^{453}=\left(4^3\right)^{151}=64^{151}\)
Vì 25150<64151 => 5300<4453
c)\(5^{217}>5^{216}=\left(5^3\right)^{72}=125^{72}>119^{72}\) => \(5^{217}>119^{72}\)
1) 4333 =43.111=(43 )111 =64111
3444 =34.111=(34)111=81111
vì 64<81 nên 64111<81111
Ta có : 4^333 = (4^3)^100