Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có thể thế vào: x=2;y=1.Ta có:
\(\frac{x-y}{x+y}=\frac{2-1}{2+1}=\frac{1}{3}\) và \(\frac{x^2-y^2}{x^2+y^2}=\frac{2^2-1^2}{2^2+1^2}=\frac{3}{5}\)
\(\Rightarrow\frac{1}{3}< \frac{3}{5}\Rightarrow\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
cái này mik giải để giúp mọi người nếu bạn cho rằng sai thì giải thử xem.
Ta có:\(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Do x>y>0 =>x2+xy+y2<x2+2xy+y2
=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x^2-y^2}{x^2+2xy+y^2}\)
=>\(\frac{x^2-y^2}{x^2+xy+y^2}>\frac{x-y}{x+y}\)
Ta có : \(\frac{x+y}{x-y}=\frac{\left(x+y\right)\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}=\frac{x^2+2xy+y^2}{x^2-y^2}>\frac{x^2+y^2}{x^2-y^2}\)
Nên \(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}\) Hay \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\) (\(\frac{a}{b}>\frac{c}{d}\) thì \(\frac{b}{a}< \frac{d}{c}\) )
Vậy \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(Ta\)\(có\)\(:\)\(\frac{x+y}{x-y}=\frac{\left(x+y\right)}{\left(x-y\right)}\frac{\left(x+y\right)}{\left(x+y\right)}=\frac{x^2+2xy+y2}{x^2-y^2}\)\(>\frac{x^2+y^2}{x^2-y^2}\)
\(Nên\)\(:\)\(\frac{x+y}{x-y}>\frac{x^2+y^2}{x^2-y^2}hay\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)\(\left(\frac{a}{b}>\frac{c}{d}thì\frac{b}{a}< \frac{d}{c}\right)\)
\(Vậy\)\(:\)\(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
\(\frac{\left(x+y\right)^3}{x^2-y^2}\)
\(\frac{\left(x^2-xy+y^2\right)}{x-y}=\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(x-y\right)}=\frac{x^3+y^3}{x^2-y^2}\)
Vì x > y > 0 => x^3 + y^3 < ( x+ y)^3
=> \(\frac{x^3+y^3}{x^2+y^2}<\frac{\left(x+y\right)^3}{x^2-y^2}\)
HAy \(\frac{\left(x+y\right)^3}{x^2-y^2}>\frac{x^2-xy+y^2}{x-y}\)
a) \(\frac{x-y}{x+y}=\frac{x^2-y^2}{\left(x+y\right)^2}\) Dễ thấy \(\frac{x^2-y^2}{\left(x+y\right)^2}< \frac{x^2-y^2}{x^2+y^2}\)
vì \(\left(x+y\right)^2>x^2+y^2\) (với x > 0, y > 0)
Nên \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
b) \(\frac{\left(a+b\right)^2}{a^2-b^2}=\frac{a+b}{a-b}=\frac{a^2-b^2}{\left(a-b\right)^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\) (với a > 0, b > 0)
Vậy \(\frac{\left(a+b\right)^2}{a^2-b^2}< \frac{a^2+b^2}{\left(a-b\right)^2}\)
\(B=\frac{x^2-y^2}{x^2+y^2}=\frac{\left(x+y\right)\left(x-y\right)}{\left(x+y\right)^2-2xy}\)(1)
Vì x>y>0, ta có:
\(A=\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)
Vì x>y>0 nên \(\left(x+y\right)^2-2xy<\left(x+y\right)^2\)(3)
Từ (1)(2)(3)=>A<B
\(B=\frac{x^2-y^2}{\left(x^2+y^2\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}\)(1)
Vì x > y > 0 '
\(\Rightarrow A=\frac{\left(x-y\right)}{\left(x+y\right)}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)(2)
Mà x > y > 0
\(\Rightarrow\left(x+y\right)^2-2xy< \left(x+y\right)^2\)(3)
Từ (1) , (2) và (3) \(\Rightarrow\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2-2xy}>\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}\)
Hay \(A< B\)
Ta có: