Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửa đề: \(A=\sqrt{7-\sqrt{24}}+\sqrt{7+\sqrt{24}}\)
\(=\sqrt{6}-1+\sqrt{6}+1=2\sqrt{6}\)
b: \(=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
Cách 1 :\(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(=\sqrt{\sqrt{5}^2-2\sqrt{5}+\sqrt{1}^2}-\sqrt{\sqrt{5}^2+2\sqrt{5}+\sqrt{1}^2}\)
\(=\sqrt{\left(\sqrt{5}-\sqrt{1}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{1}\right)^2}\)
\(=|\sqrt{5}-\sqrt{1}|-|\sqrt{5}+\sqrt{1}|=\sqrt{5}-\sqrt{1}-\sqrt{5}-\sqrt{1}=-2\)
Cách 2 \(A=\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}\)
\(< =>A^2=6-2\sqrt{5}-6-2\sqrt{5}+2\sqrt{36-20}\)
\(< =>A^2=8-2\sqrt{5}-2\sqrt{5}=8-2\left(2\sqrt{5}\right)=8-4\sqrt{5}\)
<=>...
\(B=\frac{\sqrt{3-2\sqrt{2}}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{3+2\sqrt{2}}}{\sqrt{17+12\sqrt{2}}}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{17-12\sqrt{2}}}-\frac{\sqrt{2}+\sqrt{1}}{\sqrt{17+12\sqrt{2}}}\)
\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\sqrt{17+12\sqrt{2}}-\left(\sqrt{2}+1\right)\sqrt{17-12\sqrt{2}}}{\sqrt{17^2-\left(12\sqrt{2}\right)^2}}\)
tự làm tiếp đi , mình lười viết
\(a,\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\left(Đk:x\ge1\right)\)
\(=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(=|\sqrt{x-1}-1|+|\sqrt{x-1}+1|\)
\(=\sqrt{x-1}-1+\sqrt{x-1}+1=2\sqrt{x-1}\)(Ko chắc:v)
\(b,\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{3}\right)^2}\)
\(=|\sqrt{2}-\sqrt{3}|+|\sqrt{2}+\sqrt{3}|\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{3}=2\sqrt{3}\)
a) Ta có: \(VP=\left(3+\sqrt{6}\right)^2\)
\(=3^2+2\cdot3\cdot\sqrt{6}+\left(\sqrt{6}\right)^2\)
\(=9+6\sqrt{6}+6\)
\(=15+6\sqrt{6}\)≠VP
=> Sai đề rồi bạn
\(a+b=\sqrt{6}\)
\(a.b=1\Rightarrow b=\frac{1}{a}\Rightarrow\left\{{}\begin{matrix}\frac{1}{a^5}=b^5\\\frac{1}{b^5}=a^5\end{matrix}\right.\) \(\Rightarrow\frac{1}{a^5}+\frac{1}{b^5}=a^5+b^5\)
\(a^2+b^2=\left(a+b\right)^2-2ab=6-2=4\)
\(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=6\sqrt{6}-3\sqrt{6}=3\sqrt{6}\)
\(\left(a^2+b^2\right)\left(a^3+b^3\right)=a^5+b^5+\left(ab\right)^2\left(a+b\right)\)
\(\Leftrightarrow12\sqrt{6}=a^5+b^5+1.\sqrt{6}\)
\(\Rightarrow a^5+b^5=11\sqrt{6}\)
\(A=\sqrt{6+\sqrt{6+\sqrt{6}}}+\sqrt{2+\sqrt{2+\sqrt{2}}}\)
\(A< \sqrt{6+\sqrt{6+\sqrt{9}}}+\sqrt{2+\sqrt{2+\sqrt{4}}}\)
\(=\sqrt{6+\sqrt{6+3}}+\sqrt{2+\sqrt{2+2}}\)
\(=\sqrt{6+\sqrt{9}}+\sqrt{2+\sqrt{4}}\)
\(=\sqrt{6+3}+\sqrt{2+2}\)
\(=\sqrt{9}+\sqrt{4}\)
\(=3+2=5=B\)
Vậy A < B
Chúc bạn học tốt !!!