Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có A = \(\frac{2^{2018}+1}{2^{2019}+1}\)
=> 2A = \(\frac{2^{2019}+2}{2^{2019}+1}=1+\frac{1}{2^{2019}+1}\)
Lại có B = \(\frac{2^{2017}+1}{2^{2018}+1}\)
=> 2B = \(\frac{2^{2018}+2}{2^{2018}+1}=\frac{2^{2018}+1+1}{2^{2018}+1}=1+\frac{1}{2^{2018}+1}\)
Vì \(\frac{1}{2^{2018}+1}>\frac{1}{2^{2019}+1}\Rightarrow1+\frac{1}{2^{2018}+1}>1+\frac{1}{2^{2019}+1}\Rightarrow2B>2A\Rightarrow B>A\)
\(A=\dfrac{2021^{10}-2021+2020}{2021^9-1}\\ =\dfrac{2021\left(2021^9-1\right)+2020}{2021^9-1}\\ =2021+\dfrac{2020}{2021^9-1}\\ B=\dfrac{2021^{11}-1}{2021^{10}-1}=2021+\dfrac{2020}{2021^{10}-1}\)
Ta có:
\(2021^9-1< 2021^{10}-1\\ \Rightarrow\dfrac{2020}{2021^9-1}>\dfrac{2020}{2021^{10}-1}\)
Do đó A > B.
\(2.A=\frac{2^{2021}-2}{2^{2021}-1}=1-\frac{1}{2^{2021}-1}\)
\(2B=\frac{2^{2022}-2}{2^{2022}-1}=1-\frac{1}{2^{2022}-1}\)
dó \(\frac{1}{2^{2022}-1}< \frac{1}{2^{2021}-1}\Rightarrow1-\frac{1}{2^{2022}-1}>1-\frac{1}{2^{2021}-1}\Rightarrow A< B\)
HT
Ta có: \(A=2019.2021=\left(2020-1\right)\left(2020+1\right)=2020^2-1\)
\(B=2020^2\)
=> A < B
Lời giải:
\(B=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2021}{4^{2021}}\)
\(4B=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2021}{4^{2020}}\)
\(4B-B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(3B=1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2020}}-\frac{2021}{4^{2021}}\)
\(12B=4+1+\frac{1}{4}+...+\frac{1}{4^{2019}}-\frac{2021}{4^{2020}}\)
\(9B=4-\frac{6067}{4^{2021}}<4\Rightarrow B< \frac{4}{9}< \frac{1}{2}\)
A = \(\dfrac{2^{2021}+1}{2^{2021}}\) = \(\dfrac{2^{2021}}{2^{2021}}\) + \(\dfrac{1}{2^{2021}}\) = 1 + \(\dfrac{1}{2^{2021}}\)
B = \(\dfrac{2^{2021}+2}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1+1}{2^{2021}+1}\) = \(\dfrac{2^{2021}+1}{2^{2021}+1}\) +\(\dfrac{1}{2^{2021}+1}\) = 1 + \(\dfrac{1}{2^{2021}+1}\)
Vì \(\dfrac{1}{2^{2021}}\) > \(\dfrac{1}{2^{2021}+1}\) nên 1 + \(\dfrac{1}{2^{2021}}\) > 1 + \(\dfrac{1}{2^{2021}+1}\)
Vậy A > B