Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2003^{2003}+1}{2003^{2004}+1}< \frac{2003^{2003}+1+2002}{2003^{2004}+1+2002}\)
\(=\frac{2003^{2003}+2003}{2003^{2004}+2003}=\frac{2003\left(2003^{2002}+1\right)}{2003\left(2003^{2003}+1\right)}=\frac{2003^{2002}+1}{2003^{2003}+1}=B\)
\(\Rightarrow A< B\)
Có:
- 2003A=20032004+2003/20032004+1 = 20032004+1+2002/20032004+1= 1+ 2002/20032004+1
- 2003A= 20032003+2003/20032003+1 .........= 1 + 2002/20032003+1
- Vì 1+ 2002/20032004+1<1+ 20022003+1nên 2003A<2003B
- Nên A<B
- !!!!!!!!!!!
Ta có:
\(\frac{1\div2003+1\div2004-1\div2005}{5\div2003+5\div2004-5\div2005}\) - \(\frac{2\div2002+2\div2003-2\div2004}{3\div2002+3\div2003-3\div2004}\)
Đơn giản đi hết ta sẽ còn:
\(\frac{1}{5}-\frac{2}{3}=-\frac{7}{15}\)
2.
Ta có:
Số khoảng cách của các số trong dãy là 23 = 8
=> Tổng của dãy dưới sẽ gấp 8 lần tổng dãy trên.
=> 3025 . 8 = 24200
a) Ta có: \(\frac{n}{n-3}\)có tử số lớn hơn mẫu số. \(\Rightarrow\frac{n}{n-3}>1\)
Ta lại có: \(\frac{\left(n+1\right)}{n+2}< 1\)( vì \(\frac{\left(n+1\right)}{n+2}\) có tử bé hơn mẫu)
\(\Rightarrow\frac{n}{n-3}>\frac{\left(n+1\right)}{n+2}\)
b)
Mà: \(\frac{2003.2004-1}{2003.2004}=1\)( Loại hai số giống nhau ở cả tử và mẫu: 2003 , 2004)
Còn: \(\frac{2004.2005-1}{2004.2005}=1\)
\(\Rightarrow\frac{2003.2004-1}{2003.2004}=\frac{2004.2005-1}{2004.2005}\)
P/s: Mình không chắc câu b) Nhé
Ta thấy : n > n - 3
=> \(\frac{n}{n-1}>1\)
Có : n + 1 < n + 2
=> \(\frac{n+1}{n+2}< 1\)
=> \(\frac{n}{n-3}>\frac{n+1}{n+2}\)
A=2001/2002+2002/2003
B=2001/2002+2003+2002/2002+2003
(tớ tách B ra đấy)
mà 2001//2002+2002/2003>2001/2002+2003+ 202/2002+2003
A>B
(tạm trình bày vậy vì phần đánh văn bản còn yếu, bạn hểu và trình bày đúng lại giúp mình nhé)
A:
20032003+1=20032002.2003+1=20032002+1
20032004+1=20032002.2003.2003+1=20032002.2003+1(loại số 2003 thứ hai của cả mẫu số và tử số)
B:
20032002+1=20032002+1
20032003+1=20032002.2003+1
Suy ra: A=B
Bạn làm sai