K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2019

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)

30 tháng 7 2016

Theo đầu bài ta có:
\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}+\frac{1}{2015}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}+\frac{1}{2015}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2015}\)
\(\Rightarrow S=P\)
Vậy ( S - P )2016 = 02016 = 0

29 tháng 12 2016

sai roi