Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
a) A = 1.3 +2.4 + 3.5 +...+ 97.99 + 98.100
A = 1(2 + 1) + 2(3+1) + 3(4 + 1) +...+ 98(99+1)
= (1.2 + 2.3 + 3.4 +...+ 98.99) + (1 + 2 + 3 +...+ 98)
= [ 1.2.3 + 2.3.(4-1) +...+ 98.99.(100-97)] + [ 1.2 + 2.(3-1) + 3.(4-2) +... 98.(99-97)]
= [ 1.2.3 + 2.3.(4-1) - 1.2.3 + 3.4.(5-2) - 2.3.(4-1) +...+ 98.99.(100-97) - 97.98(99-96)] + [ 1.2 + 2.(3-1) - 1.2 + 3.(4-2) - 2.(3-1) +...+ 98.(99-97) - 97(98-96)]
= 98.99.100:3 + 98.99:2 = 323 400 + 4581 = 328251
b) B = 1.2.3 + 2.3.4 + 3.4.5 +...+ 48.49.50
4B = 1.2.3.4 + 2.3.4.(5-1) + 3.4.5.(6-2) +...+ 48.49.50.(51-47)
4B-B = 1.2.3.4 + 2.3.4.(5-1) - 1.2.3.4 + 3.4.5.(6-2) - 2.3.4.(5-1) +...+ 48.49.50.(51-47) - 47.48.49.(50-46)
= 48.49.50.51:4 = 1499400
a) \(A=1+2+2^2+...+2^{2016}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2017}\right)-\left(1+2+2^2+...+2^{2016}\right)\)
\(\Rightarrow A=2^{2017}-1\)
Vậy \(A=2^{2017}-1\)
b) \(B=1.2.3+2.3.4+...+n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+n\left(n+1\right)\left(n+2\right)\left[\left(n+3\right)-\left(n-1\right)\right]\)
\(\Rightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow4B=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(\Rightarrow B=\frac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy...
a) Ta có:
3A= \(1+\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\left(1\right)\)
A= \(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\left(2\right)\)
Lấy (1) - (2) ta được:
1-\(\dfrac{1}{3^{100}}\)
b) Ta xét:
\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3},...,\dfrac{1}{37.38}-\dfrac{1}{38.39}=\dfrac{2}{37.38.39}\)
Ta có:
2B=\(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+..+\dfrac{2}{37.38.39}\)
=\(\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)+\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)+..+\left(\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
=\(\dfrac{1}{1.2}-\dfrac{1}{38.39}=\dfrac{740}{38.39}=\dfrac{370}{741}\)
Vậy \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+..+\dfrac{2}{37.38.39}\)
=\(\dfrac{370}{741}\)
Nếu bn cảm thấy mk đúng tick cho mk nhé!
A=1/2+1/4+1/8+1/16+1/32 A.2=1+1/2+1/4+1/8+1/16 A.2-A=A=1+1/2+1/4+1/8+1/16-1-1/2-1/4-1/6-1/8-1/16-1/32 A=1-1/32=31/32 B=1/2+1/2^2+1/2^3+...+1/2^2002 B.2=1+1/2+1/2^2+...+1/2^2001 B.2-B=B=1+1/2+...+1/2001-1/2-1/2^2-...-1/2^2002 B=1-1/2^2002=2^2002-1/2^2002 C=2/2.3.4+2/3.4.5+...+2/38.39.40 C=2.(1/2.3.4+1/3.4.5+...+1/38.39.40) C=2.1/2.(1/2.3 -1/3.4 +1/3.4 -1/4.5 +...+1/38.39 -1/39.40) C=1.(1/2.3 -1/39.40)=259/1560.
a. = 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8- 1/16 + 1/16 - 1/32 = 1-1/32=1/31
\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{20}}\right)\)
\(A=1-\frac{1}{2^{20}}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{20}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{21}}\right)\)
\(2B=1-\frac{1}{3^{21}}\)
\(B=\frac{1-\frac{1}{3^{21}}}{2}\)
\(C=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{19\cdot20\cdot21}\)
\(C=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{19\cdot20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+\frac{1}{3\cdot4}-\frac{1}{4\cdot5}+...+\frac{1}{19\cdot20}-\frac{1}{20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{20\cdot21}\right)\)
\(C=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{420}\right)\)
\(C=\frac{1}{2}\cdot\frac{209}{420}\)
\(C=\frac{209}{480}\)