Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5x(x - y) - y(5x - y)
A = 5x2 - 5xy - 5xy + y2
A = 5x2 - 10xy + y2 (1)
Thay x = -1; y = 3 vào (1), ta có:
5.(-1)2 - 10.(-1).3 + 32 = 44
B = 4y(x2 - 3xy + 3y2) - 2xy(2x - 6y - 3)
B = 4x2y - 12x2 + 12y3 - 4x2y + 12xy2 + 6xy
B = 12y3 + 6xy (1)
Thay x = 5; y = -1 vào (1), ta có:
12.(-1)3 + 6.5.(-1) = -42
C = 5x2(x - y2) + 3x(xy2 - y) - 5x3
C = 5x3 - 5x2y2 + 3x2y2 - 3xy - 5x3
C = -2x2y2 - 3xy (1)
Thay x = -2; y = -5 vào (1), ta có:
-2.(-2)2.(-5)2 - 3.(-2).(-5) = -230
D = 6x2(y2 - xy + 2x2y) - 3xy(2xy - x2 + 4x3)
D = 6x2y2 - 6x3y + 12x4y - 6x2y2 + 3x3y - 12x4y
D = -3x3y (1)
Thay x = 11; y = -1 vào (1), ta có:
-3.113.(-1) = 3993
a , x^2 - 2x - (3x^2 - 5x + 4) + (2x^2 - 3x + 7)
= x^2 - 2x - 3x^2 + 5x - 4 + 2x^2 - 3x + 7
= (x^2 - 3x^2 + 2x^2) + (-2x + 5x - 3x) + (-4 + 7)
= 3
Vậy GTBT ko phụ thuộc vào biến
b, (2x^3 - 4x^2 + x - 1) - (5 - x^2 + 2x^3) + 3x^2 - x
= 2x^3 - 4x^2 + x - 1 - 5 + x^2 - 2x^3 + 3x^2 - x
= (2x^3 - 2x^3) + (-4x^2 + x^2 + 3x^2 ) + (x - x) + (-1 - 5)
= -6
Vậy GTBT ko phụ thuộc vào biến
a) x2 -2x -( 3x2 -5x +4 )+(2x2 - 3x +7 )
= x2 -2x - 3x2 + 5x - 4 + 2x2 - 3x +7
= 3
Vậy biểu thức không phụ thuộc vào biến.
b) ( 2x3 -4x2 +x - 1)- (5 - x2 +2x3 ) +3x2 - x
= 2x3 -4x2 +x - 1 - 5 + x2 - 2x3 +3x2 - x
= -1 - 5 = -6
Vậy biểu thức không phụ thuộc vào biến x
a) 3x(x + 2) + 4x(-2x + 3) + (2x - 3)(3x + 1)
= 3x2 + 6x - 8x2 + 12x + 6x2 + 2x - 9x - 3
= (3x2 - 8x2 + 6x2) + (6x + 12x + 2x - 9x) - 3
= x3 + 11x - 3
b) (x2 + 1)(x2 - x + 2) - (x2 - 1)(x2 + x - 2)
= x4 - x3 + 3x2 - x + 2 - x4 - x3 + 3x2 + x - 2
= (x4 - x4) + (-x3 - x3) + (3x2 + 3x2) + (-x + x) + (2 - 2)
= -2x3 + 6x2
c) (-2x - 3)2 + (3x + 2)2 + (4x + 1)
= 4x2 + 12x + 9 + 9x2 + 12x + 4 + 4x + 1
= (4x2 + 9x2) + (12x + 12x + 4x) + (9 + 4 + 1)
= 13x2 + 28x + 14
f(x) = 3x + x - x - 5x^3 + x^3 + 4x^3 - 2x^2 - 4
f(x) = 3x - 10x^3 - 2x^2 - 4
\(3x^4+2x^3-x^2-3x^4+x^3+x^2-3x+5\)
\(=\left(3-3\right)x^4+\left(2+1\right)x^3-\left(1+1\right)x^2-3x+5\)
\(=0x^4+3x^3-0x^2-3x+5\)
\(=3x^3-3x+5\)
LG :
3x4 + 2x3 - x2 - 3x4 + x3 + x2 - 3x + 5
= ( 3x4 - 3x4) + ( 2x3 + x3 ) + ( -x2 + x2 ) - 3x + 5
= 3x3 - 3x + 5
Hok tôt !!! ^_^
a) P(x) = 2x3 - 2x + x2 - x3 + 3x + 2
P(x) = (2x3 - x3) + x2 + (-2x + 3x) + 2
P(x) = x3 + x2 + x + 2
Q(x) = 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
Q(x) = (4x3 - 3x3) + (-5x2 + 4x2) + (3x - 4x) + 1
Q(x) = x3 + x2 - x + 1
b) P(x) + Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) + (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1
= (2x3 - x3 + 4x3 - 3x3) + (-2x + 3x + 3x - 4x) + (x2 - 5x2 + 4x2) + (2 + 1)
= 2x3 + 3
P(x) - Q(x) = (2x3 - 2x + x2 - x3 + 3x + 2) - (4x3 - 5x2 + 3x - 4x - 3x3 + 4x2 + 1)
= 2x3 - 2x + x2 - x3 + 3x + 2 + 4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 - 1
= (2x3 - x3 + 4x3 + 3x2) + (-2x + 3x - 3x + 4x) + (x2 + 5x2 - 4x2) + (2 - 1)
= 8x2 + 2x + 2x2 + 1
c) P(-1) = 2.(-1)3 - 2.(-1) + (-1)2 - (-1)3 + 3.(-1) + 2
= -2 - (-2) + 1 - (-1) - 3 + 2
= 1
Q(2) = 2.23 - 2.2 + 22 - 23 + 3.2 + 2
= 16 - 4 + 4 - 8 + 6 + 2
= 16
Đáp án:
Giải thích các bước giải:
a) P(x) = 2x³ - 3x + x⁵ - 4x³ + 4x - x⁵ + x² - 2
= -2x³ + x² + x - 2
Q(x) = x³ - 2x² + 3x + 1 + 2x²
= x³ + 3x + 1
Sắp xếp theo thứ tự giảm dần của biến là:
P(x) = -2x³ + x² + x - 2
Q(x) = x³ + 3x + 1
b) P(x) + Q(x) = -2x³ + x² + x - 2 + x³ + 3x + 1
= -x³ + x² + 4x - 1
P(x) - Q(x) = -2x³ + x² + x - 2 - x³ - 3x - 1
= -4x³ + x² - 2x - 3
(5x3 – 4x2) : 2x2 + (3x4 + 6x) : 3x – x(x2 – 1)
= 5x3 : 2x2 + (-4x2): 2x2 + 3x4 : 3x + 6x : 3x – [x. x2 + x . (-1)]
= (5:2) . (x3 : x2) + [(-4) : 2] . (x2 : x2) + (3 : 3) . (x4 : x) + (6 : 3). (x:x) – ( x3 – x)
= \(\dfrac{5}{2}\)x – 2 + x3 + 2 – x3 + x
= (x3 – x3) + (\(\dfrac{5}{2}\)x + x) + (-2 + 2)
= 0 + \(\dfrac{7}{2}\)x + 0
= \(\dfrac{7}{2}\)x