K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2018

điều kiện : \(x\ge1\)

ta có : \(P=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)

\(=\sqrt{\left(\sqrt{x-1}+1\right)^2}+\sqrt{\left(\sqrt{x-1}-1\right)^2}\)

\(=\sqrt{x-1}+1+\left|\sqrt{x-1}-1\right|\)

\(\Rightarrow\left[{}\begin{matrix}P=2\sqrt{x-1}\left(x\ge2\right)\\P=2\left(1\le x< 2\right)\end{matrix}\right.\)

vậy .....................................................................................................

3 tháng 9 2018

tks ạ!

13 tháng 8 2018

\(A=\sqrt{x}\left(\sqrt{x}-1\right)=x-\sqrt{x}=x-2.\dfrac{1}{2}\sqrt{x}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\left(x\ge0\right)\)

\(\Rightarrow A_{Min}=-\dfrac{1}{4}."="\Leftrightarrow x=\dfrac{1}{4}\left(TM\right)\)

15 tháng 8 2018

đa tạ bn nhìu nha Phùng Khánh Linh .yeu

3 tháng 9 2018

với điều kiện là a>0 nữa nha m.n. mk quên ghi ở trên đề!

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được

27 tháng 7 2017

đkxđ \(x\ne1;x\ge0\)

\(P=\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}\right)^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{1}{\sqrt{x}-1}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(P=\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x-2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+1-x+2+x-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(P=\frac{x+\sqrt{x}+2}{\left(\sqrt{x}\right)^3-1}\)

28 tháng 7 2017

bạn làm câu b được không ạ?

26 tháng 7 2017

đkxđ là \(x\ne1;x>0\)

\(Q=\frac{\sqrt{x}\left(\left(\sqrt{x}\right)^3-1\right)}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(Q=\frac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-2\sqrt{x}-1+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(Q=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

gtnn \(x-\sqrt{x}+1=x-\frac{1}{2}.2.\sqrt{x}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

gtnn 3/4

ý c bạn tự làm nha mk chịu

27 tháng 7 2017

mình cảm ơn bạn nha 

20 tháng 4 2020

ĐK: x > 0

a) Rút gọn M 

M =  \(\frac{\sqrt{x}}{x+\sqrt{x}}:\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}:\left(\frac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) \(\frac{1}{M}=\frac{x+\sqrt{x}+1}{\sqrt{x}}=\sqrt{x}+\frac{1}{\sqrt{x}}+1\ge2+1=3\)

=> M \(\le\)1/3

=> GTLN của M =1/ 3 khi \(\sqrt{x}=\frac{1}{\sqrt{x}}\Leftrightarrow x=1\) thỏa mãn

Vậy max M = 1/3 tại x = 1

20 tháng 4 2020

bn giải thíchcách làm câu b hôk mk vs mk ko hiểu