Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+4\right)\left(x^2+x\right)-12\)
Đặt \(t=x^2+x\) ta có:
\(\left(t+4\right)t-12=t^2+4t-12\)
\(=\left(t-2\right)\left(t+6\right)=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
b)\(x^8+x+1\)
\(=x^8-x^2+\left(x^2+x+1\right)\)
\(=x^2\left(x^6-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\left[x^2\left(x^3+1\right)\left(x-1\right)+1\right]\)
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3x^2y-3xy^2-3xyz\)
\(=\left(x+y\right)^3-3xy\left(x-y\right)+z^3-3xyz\)
\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)^3-3z\left(x+y\right)\left(x+y+z\right)-3xy\left(x-y-z\right)\)
\(=\left(x+y+z\right)\left[\left(x+y+z\right)^2-3z\left(x+y\right)-3xy\right]\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz-3xz-3yz-3xy\right)\)
\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
= (x + y)3 + z3 – 3x2y – 3xy2 - 3xyz
= (x + y +z)[(x + y)2 – (x + y)z + z2)] - 3xy(x + y + z)
= (x + y + z)(x2 +2xy + y2 – xz – yz +z2 – 3xy)
= (x + y + z)(x2 + y2 +z2 – xy - yz – xz)
2(x4+y4+z4)-(x2+y2+z2)2-2(x2+y2+z2)(x+y+z)2+(x+y+z)4
=2(x4+y4+z4)-(x2+y2+z2)2+(x+y+z)2[-2(x2+y2+z2)+(x+y+z)2]
tới đây r` sao đặt ẩn phân tích tiếp chắc =="
Bài 1 :
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x^2-x\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x^2-x-6\right)\left(x+1\right)\)
\(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x^3-3x\)
x (2x2-3)-x2(5x+1) + x2
= x[(2x2-3)-x(5x+1)+x]
=x(2x2-3-5x2-x+x)
=x(-3x2-3)
=-3x3-3x
Bài 1:
a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)
\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)
\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)
c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d, \(x^2-6x+8=x^2-2x-4x+8\)
\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)
Chúc bạn học tốt!!!
1)
a) \(2x\left(y-z\right)+5y\left(z-y\right)\)
\(=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
c) \(7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
2)
a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)
\(=5x^3+3x^2-x+15x^2+9x-3\)
\(=5x^3+3x^2+15x^2-x+9x-3\)
\(=5x^3+18x^2+8x-3\)
b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)
\(=x+2+\dfrac{5x+3}{x^2-2}\)
a) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
giải giùm mình bài b luôn đi