Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(5x-2y)(x2-xy+1)=5x3-5x2+5x-2yx2+2xy2-2y
=5x3-7x2y+2xy2+5x-2y
b,(x-2)(x+2)(\(\dfrac{1}{2}\) x-5)=x2-4.\(\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-2x+20\)
c,\(\left(x^2-2x+3\right)\left(\dfrac{1}{2}x-5\right)\)
=\(\dfrac{1}{2}x^3-5x^2-1x^2+10x+\dfrac{3}{2}x-15\)
=\(\dfrac{1}{2}x^3-6x^2+\dfrac{23}{2}x-15\)
d,\(\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)\)
=\(x^3+3x^2-5x-15+x^2-x^3+4x-4x^2\)
=\(-5x+4x-15\)
=\(-x-15\)
Chúc bạn học tốt(mỏi tay quá)
Câu 1. Tìm x, biết:
\(a.3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
\(b.2x\left(x-1\right)+x\left(5-2x\right)=15\)
\(2x^2-2x+5x-2x^2=15\)
\(3x=15\)
\(x=5\)
Câu 2. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(x^2-2xy\right)\left(-3x^2y\right)=-3x^4y+6x^3y^2\)
\(b.x^2\left(x-y\right)+y\left(x^2+y\right)=x^3+y^2\)
Câu 3. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(2x+1\right)^2\)
\(b.\left(x+2y\right)^2\)
Câu 4. Viết các đa thức sau dưới dạng bình phương của một tổng:
\(a.\left(2x-3y\right)^2+2\left(2x+3y\right)+1=\left(2x-3y+1\right)^2\)
\(b.x^2+4xy+4y^2=\left(x+2y\right)^2\)
Câu 5. Chứng minh đẳng thức:
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 6. Điền vào chỗ trống để được kết quả đúng:
\(a.8x^6+36x^4y+54x^2y^2+27y^3=\left[\left(2x^2\right)+3y\right]^3\)
\(b.x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
Câu 11. Rút gọn biểu thức:
\(A=\left(x^2-3x+9\right)\left(x+3\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3=-27\)
Câu 8. Viết biểu thức sau dưới dạng tích:
\(a.8x^3-y^3=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(b.27x^3+8=\left(3x+2\right)\left(9x^2-6x+4\right)\)
Câu 9. Chứng minh đẳng thức:
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 10. Điền vào chỗ trống để được đẳng thức đúng:
\(a.\left(2x\right)^3+y^3=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(b.\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)
Câu 7. Rút gọn biểu thức:
\(A=\left(x+3\right)\left(x-3x+9\right)-\left(54+x^3\right)=3x-2x^2+27-54-x^3=3x-2x^2-27-x^3\)
( Chắc rút vậy là hết cỡ rồi ==" )
Câu 12 . Coi lại đề @@
Câu 13 .
\(y^2+4y+4=\left(2+y\right)^2=\left(98+2\right)^2=100^2=10000\)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)
a, Theo bài ra ta có:
\(=x^3-x-2x+2\)
\(=x\left(x^2-1\right)-2\left(x-1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2+x-2\right)\)
b, theo bài ra ta có:
\(=x^3-3x^2-\left(2x^2-6x\right)-\left(3x-9\right)\)
\(=x^2\left(x-3\right)-2x\left(x-3\right)-3\left(x-3\right)\)
\(=\left(x^2-2x-3\right)\left(x-3\right)\)
c,Theo bài ra ta có:
\(=x^3+5x^2+3x^2+15x+2x+10\)
\(=x^2\left(x+5\right)+3x\left(x+5\right)+2\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2+3x+2\right)\)
\(=\left(x+5\right)\left(x^2+x+2x+2\right)=\left(x+5\right)\left(x\left(x+1\right)+2\left(x+1\right)\right)\)
\(=\left(x+5\right)\left(x+1\right)\left(x+2\right)\)
CHÚC BẠN HỌC TỐT...........
a) \(x^3-3x+2\)
= \(x^3-x^2+x^2-x-2x+2\)
= \(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)\)
= \(\left(x-1\right)\left(x^2+x-2\right)\)
= \(\left(x-1\right)\left(x^2+2x-x-2\right)\)
= \(\left(x-1\right)\left[x\left(x+2\right)-\left(x+2\right)\right]\)
= \(\left(x-1\right)\left(x+2\right)\left(x-1\right)\)
= \(\left(x-1\right)^2\left(x+2\right)\)
b) \(x^3-5x^2+3x+9\)
= \(x^3+x^2-6x^2-6x+9x+9\)
= \(x^2\left(x+1\right)-6x\left(x+1\right)+9\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2-6x+9\right)\)
= \(\left(x+1\right)\left(x-3\right)^2\)
c) \(x^3+8x^2+17x+10\)
= \(x^3+x^2+7x^2+7x+10x+10\)
= \(x^2\left(x+1\right)+7x\left(x+1\right)+10\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+7x+10\right)\)
= \(\left(x+1\right)\left(x^2+2x+5x+10\right)\)
= \(\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
= \(\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
d) \(x^3-3x^2+6x+4\)
Câu này đúng là sai đề rồi, mình sửa + làm bên dưới:
\(x^3+3x^2+6x+4\)
= \(x^3+x^2+2x^2+2x+4x+4\)
= \(x^2\left(x+1\right)+2x\left(x+1\right)+4\left(x+1\right)\)
= \(\left(x+1\right)\left(x^2+2x+4\right)\)
Học tốt nhé :))
\(\left(a+b+c\right)^3-\left(a-b-c\right)^3-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3-\left[a^3-3a^2\left(b+c\right)+3a\left(b+c\right)^2-\left(b+c\right)^3\right]-6a\left(b+c\right)^2\)
\(=a^3+3a^2\left(b+c\right)+3a\left(b+c\right)^2+\left(b+c\right)^3-a^3+3a^2\left(b+c\right)-3a\left(b+c\right)^2+\left(b+c\right)^3-6a\left(b+c\right)^2\)
\(=2\left(b+c\right)^3-6a\left(b+c\right)^2+6a^2\left(b+c\right)\)
\(=\left(b+c\right)\left(2b^2+4bc+2c^2-6ab-6ac+6a^2\right)\)
\(=2\left(b+c\right)\left(b^2+2bc+c^2-3ab-3ac+3a^2\right)\)
Ta có: (a2 + b2)(x2 + y2) = (ax + by)2
<=> a2x2 + a2y2 + b2x2 + b2y2 = a2x2 + 2axby + b2y2
<=> a2x2 + a2y2 + b2x2 + b2y2 - a2x2 - 2axby - b2y2 = 0
<=> (a2y2 - axby) + (b2x2 - axby) = 0
<=> ay(ay - bx) - bx(ay - bx) = 0
<=> (ay - bx)2 = 0
<=> ay - bx = 0
Vậy bài toán đã được chứng minh
Sửa đề: thì \(ay-bx=0\)
Giải:
Xét hiệu: \(\left(a^2+b^2\right)\left(x^2+y^2\right)-\left(ax+by\right)^2\)
\(=a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2\) \(-2axby\)
\(=a^2y^2-2axby+b^2x^2\)
\(=\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\) (Đpcm)
Bài 2:
a: \(A=-3\left(x^2-\dfrac{4}{3}x+\dfrac{1}{3}\right)\)
\(=-3\left(x^2-2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{1}{9}\right)\)
\(=-3\left(x-\dfrac{2}{3}\right)^2+\dfrac{1}{3}\le\dfrac{1}{3}\)
Dấu '=' xảy ra khi x=2/3
b: \(B=-x^2+5x+3\)
\(=-\left(x^2-5x-3\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{37}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{37}{4}\le\dfrac{37}{4}\)
Dấu '=' xảy ra khi x=5/2
\(\text{a) }\left(\dfrac{1}{2}a^2x^4+\dfrac{4}{3}\:ax^3-\dfrac{2}{3}ax^2\right):\left(-\dfrac{2}{3}\:ax^2\right)\\ =-3ax^2-2x+1\)
\(\text{b) }4\left(\dfrac{3}{4}x-1\right)+\left(12x^2-3x\right):\left(-3x\right)-\left(2x+1\right)\\ =3x-4-4x+1-2x-1\\ =-3x-4\)
kết quả cuối cùng là: a. -\(\dfrac{3}{4}ax^2-2x+1\)
b. \(\)-\(3x-4\)
Bài 1:
a, \(2x\left(y-z\right)+5y\left(z-y\right)=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b, \(x^3-3x^2+3x-1=x^3-x^2-2x^2+2x+x-1\)
\(=x^2.\left(x-1\right)-2x.\left(x-1\right)+\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1\right)=\left(x-1\right)\left(x^2-x-x+1\right)\)
\(=\left(x-1\right)\left(x-1\right)^2=\left(x-1\right)^3\)
c, \(7x^2-7xy-4x+4y=7x.\left(x-y\right)-4.\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d, \(x^2-6x+8=x^2-2x-4x+8\)
\(=x.\left(x-2\right)-4\left(x-2\right)=\left(x-2\right)\left(x-4\right)\)
Chúc bạn học tốt!!!
1)
a) \(2x\left(y-z\right)+5y\left(z-y\right)\)
\(=2x\left(y-z\right)-5y\left(y-z\right)\)
\(=\left(y-z\right)\left(2x-5y\right)\)
b) \(x^3-3x^2+3x-1\)
\(=x^3-3.x^2.1+3.x.1^2-1^3\)
\(=\left(x-1\right)^3\)
c) \(7x^2-7xy-4x+4y\)
\(=7x\left(x-y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(7x-4\right)\)
d) \(x^2-6x+8\)
\(=x^2-4x-2x+8\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
2)
a) \(\left(5x^2+3x-1\right)\left(x+3\right)\)
\(=5x^3+3x^2-x+15x^2+9x-3\)
\(=5x^3+3x^2+15x^2-x+9x-3\)
\(=5x^3+18x^2+8x-3\)
b) \(\left(x^3+2x^2+3x-1\right):\left(x^2-2\right)\)
\(=x+2+\dfrac{5x+3}{x^2-2}\)