Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
Bài 2:
a: \(x^2-16-\left(x+4\right)=0\)
=>(x+4)(x-4)-(x+4)=0
=>(x+4)(x-5)=0
=>x=5 hoặc x=-4
b: \(\left(3x-1\right)^2-\left(9x^2-1\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+1=0\)
=>-6x+2=0
=>-6x=-2
hay x=1/3
c: \(4x^2+9=-12x^2\)
\(\Leftrightarrow4x^2+12x^2=-9\)
\(\Leftrightarrow16x^2=-9\)(vô lý)
Do đó: \(x\in\varnothing\)
d: \(4x^2-5x+1=0\)
\(\Leftrightarrow4x^2-4x-x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)=0\)
=>x=1 hoặc x=1/4
e: \(4x^2-4x+3=0\)
\(\Leftrightarrow4x^2-4x+1+2=0\)
\(\Leftrightarrow\left(2x-1\right)^2=-2\)(vô lý)
Do đó: \(x\in\varnothing\)
Bài 1:
a: \(\Leftrightarrow x^2-4x-x^2+8=0\)
=>-4x+8=0
hay x=2
b: \(\Leftrightarrow3x^2-3x+2x-2-3\left(x^2-x-2\right)=4\)
\(\Leftrightarrow3x^2-x-2-3x^2+3x+6=4\)
=>2x+4=4
hay x=0
ý a pạn đưa về dạng ax+b=0 khi chuyển 16 sang và rút gọn 2 biểu thức còn lại đưa về dạng (a+b)2+(a-b)2-16=0. thế thôi. hai biểu thức (x+3)4+(x-2) 4 tự phân tích nhé
Câu h đề không đẹp lắm, sửa thành-2x nha
f) x2-2x+5
=x2-2x+1+4
=(x-1)2+4
Vì: \(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
Min = 4 khi x=1
g) 2x2-6x
= \(\sqrt{2x}^2-2.\sqrt{2x}.\dfrac{3\sqrt{2}}{2}+\left(\dfrac{3\sqrt{2}}{2}\right)^2-\left(\dfrac{3\sqrt{2}}{2}\right)^2\)
= \(\left(\sqrt{2x}-\dfrac{3\sqrt{2}}{2}\right)^2-\dfrac{9}{2}\)
Tương tự bài trên
h) x2+y2-2x+6y+10
=(x2-2x+1)+(y2+6y+9)
=(x-1)2+(y+3)2
Min=0 khi x=1; y=-3
nói thật bn xạo lz vc đề thế nào thì để đó chứ ko đẹp thì nó ko có Min à
Đặt tính \(2n^2-n+2\) : \(2n+1\) sẽ bằng n - 1 dư 3
Để chia hết thì 3 phải chia hết cho 2n + 1 hay 2n + 1 là ước của 3
Ư(3) = {\(\pm\) 3; \(\pm\) 1}
\(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
\(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
\(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
\(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
Vậy \(n=\left\{0;-2;\pm1\right\}\)
a: \(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
=>x=1 hoặc x=3
b: \(x^2+x-12=0\)
=>(x+4)(x-3)=0
=>x=3 hoặc x=-4
c: \(3x^2+2x-5=0\)
\(\Leftrightarrow3x^2+5x-3x-5=0\)
=>(3x+5)(x-1)=0
=>x=1 hoặc x=-5/3
d: \(x^4-2x^2-3=0\)
\(\Leftrightarrow x^4-3x^2+x^2-3=0\)
\(\Leftrightarrow x^2-3=0\)
hay \(x\in\left\{\sqrt{3};-\sqrt{3}\right\}\)