Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x^2+3x+2)(x^2+7x+12)+1
=(x2+x+2x+2)(x2+3x+4x+12)+1
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]+1
=(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)+1
=(x2+5x+4)[(x2+5x+4)+2]+1
=(x2+5x+4)2+2(x2+5x+4)+1
=(x2+5x+4+1)2
=(x2+5x+5)2
(x^2+3x+2)(x^2+7x+12)-24
=(x2+x+2x+2)(x2+3x+4x+12)-24
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]-24
=(x+1)(x+2)(x+3)(x+4)-24
=(x+1)(x+4)(x+2)(x+3)-24
=(x2+5x+4)(x2+5x+6)-24
Đặt t=x2+5x+4 ta được:
t.(t+2)-24
=t2+2t-24
=t2-4t+6t-24
=t.(t-4)+6.(t-4)
=(t-4)(t+6)
thay t=x2+5x+4 ta được:
(x2+5x+4-4)(x2+5x+4+6)
=(x2+5x)(x2+5x+10)
=x.(x+5)(x2+5x+10)
Vậy (x^2+3x+2)(x^2+7x+12)-24=x.(x+5)(x2+5x+10)
Ta có : \(M=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
Đặt \(t=x^2+5x+5\) \(\Rightarrow M=\left(t-1\right)\left(t+1\right)+1=t^2-1+1=t^2\)
Vậy \(M=\left(x^2+5x+5\right)^2\)
a, x^2 + 5x +4
= x^2 + 1x + 4x + 4
= (x^2 + 1x) + (4x + 4)
= x ( x + 1 ) + 4 ( x + 1 )
= (x + 1) (x + 4)
b, x^2 - 6x + 5
= x^2 - 1x - 5x + 5
= (x^2 - 1x) - (5x - 5)
= x (x - 1) - 5 (x - 1)
= (x - 1) (x - 5)
c, x^2 + 7x + 12
= x^2 + 3x + 4x + 12
= (x^2 + 3x) + (4x + 12)
= x (x + 3) + 4 (x + 3)
= (x + 3) (x + 4)
d, 2x^2 - 5x + 3
= 2^x2 - 2x - 3x + 3
= 2x (x - 1) - 3 (x - 1)
= (x-1) (2x - 3)
e, 7x - 3x^2 - 4
= 3x + 4x - 3x^2 - 4
= (3x - 3x^2) + (4x - 4)
= 3x (1 - x) + 4 (x - 1)
= 3x (1-x) - 4 (1 - x)
= (1 - x) (3x - 4)
f, x^2 - 10x + 16
= x^2 - 2x - 8x + 16
= (x^2 - 2x) - (8x - 16)
= x (x - 2) - 8 (x - 2)
= (x - 2) (x - 8)
a, (x+1)(x+4)
b,(x-5)(x-1)
c,(x+3)(x+4)
d,(2x-3)(x-1)
e,(-3x+4)(x-1)
f, (x-8)(x-2)
a) 4x2 + 4x - 3x = 4x2 +x = x( 4x+1)
b) x2+7x+10= x2+2x+5x+10= x(x+2)+5(x+2)= (x+5)(x+2)
c) x2-x-12= x2 - 4x+3x-12= x(x-4)+3(x-4)=(x+3)(x-4)
d) x2+3x-18=x2+6x-3x-18= x(x+6)-3(x+6)=(x-3)(x+6)
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x-2\right)\left(x-3\right)\)
b)\(3x^2+9x-30=3x^2-6x+15x-30=3\left(x-2\right)\left(x+5\right)\)
c)\(x^2-7x+12=x^2-3x-4x+12=\left(x-3\right)\left(x-4\right)\)
d)\(x^2-7x+10=x^2-2x-5x+10=\left(x-2\right)\left(x-5\right)\)
a) \(x^2-5x+6=x^2-2x-3x+6=\left(x^2-2x\right)-\left(3x-6\right)\)
\(=x\left(x-2\right)-3\left(x-2\right)=\left(x-2\right)\left(x-3\right)\)
b) \(3x^2+9x-30=3\left(x^2+3x-10\right)=3\left(x^2-2x+5x-10\right)\)
\(=3\left[\left(x^2-2x\right)+\left(5x-10\right)\right]=3\left[x\left(x-2\right)+5\left(x-2\right)\right]\)
\(=3\left(x-2\right)\left(x+5\right)\)
c) \(x^2-7x+12=x^2-3x-4x+12=\left(x^2-3x\right)-\left(4x-12\right)\)
\(=x\left(x-3\right)-4\left(x-3\right)=\left(x-3\right)\left(x-4\right)\)
d) \(x^2-7x+10=x^2-2x-5x+10=\left(x^2-2x\right)-\left(5x-10\right)\)
\(=x\left(x-2\right)-5\left(x-2\right)=\left(x-2\right)\left(x-5\right)\)
(x^2+3x+2)(x^2+7x+12)
=(x2+x+2x+2)(x2+3x+4x+12)
=[x.(x+1)+2.(x+1)][x.(x+3)+4.(x+3)]
=(x+1)(x+2)(x+3)(x+4)